Bridging arsenate surface complexes on the hematite (0 1 2) surface

Jeffrey G. Catalano*, Zhan Zhang, Changyong Park, Paul Fenter, Michael J. Bedzyk

*Corresponding author for this work

Research output: Contribution to journalArticle

84 Scopus citations

Abstract

The fate of the oxoanion arsenate in diverse systems is strongly affected by its adsorption on the surfaces of iron (oxyhydr)oxide minerals. Predicting this behavior in the environment requires an understanding of the mechanisms of arsenate adsorption. In this study, the binding site and adsorption geometry of arsenate on the hematite (0 1 2) surface is investigated. The structure and termination of the hematite (0 1 2)-water interface were determined by high resolution X-ray reflectivity, revealing that two distinct terminations exist in a roughly 3:1 proportion. The occurrence of multiple terminations appears to be a result of sample preparation, and is not intrinsic to the hematite (0 1 2) surface. X-ray standing wave (XSW) measurements were used to determine the registry of adsorbed arsenate to the hematite structure, and thus the binding site and geometry of the resulting surface complex. Arsenate forms a bridging bidentate complex on two adjacent singly coordinated oxygen groups on each of the two distinct terminations present at the hematite surface. Although this geometry is consistent with that seen in past studies, the derived As-Fe distances are longer, the result of the topology of the FeO6 octahedra on the (0 1 2) surface. As EXAFS-derived As-Fe distances are often used to determine the adsorption mechanism in environmental samples (e.g., mine tailings, contaminated sediments), this demonstrates the importance of considering the possible sorbent surface structures and arrangements of adsorbates when interpreting such data. As multiple functional groups are present and multiple binding geometries are possible on the hematite (0 1 2) surface, the XSW data suggest that formation of bridging bidentate surface complexes on singly coordinated oxygen sites is the preferred adsorption mechanism on this and most other hematite surfaces (provided those surfaces contain adjacent singly coordinated oxygen groups). These measurements also constrain the likely reaction stoichiometry, with only the protonation state of the surface complex undetermined. Although bridging bidentate inner-sphere surface complexes comprised the majority of the adsorbed arsenate present on the hematite (0 1 2) surface, there is an additional population of sorbed arsenate species that could not be characterized by the XSW measurements. These species are likely more disordered, and thus more weakly bound, than the bridging bidentate complexes, and may play a role in determining the fate, transport, and bioavailability of arsenate in the environment. Finally, the possibility of obtaining species-specific XSW measurements by tuning the incident beam energy to specific features in a XANES spectrum is described.

Original languageEnglish (US)
Pages (from-to)1883-1897
Number of pages15
JournalGeochimica et Cosmochimica Acta
Volume71
Issue number8
DOIs
StatePublished - Apr 15 2007

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint Dive into the research topics of 'Bridging arsenate surface complexes on the hematite (0 1 2) surface'. Together they form a unique fingerprint.

  • Cite this