Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells

Kathryn N. Farrow*, Keng Jin Lee, Marta Perez, Jacqueline M. Schriewer, Stephen Wedgwood, Satyan Lakshminrusimha, Cody L. Smith, Robin H. Steinhorn, Paul T. Schumacker

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Aims: Oxygen is a pulmonary vasodilator, but data suggest high O 2 concentrations impede that response. We previously reported 24 h of 100% O 2 increased phosphodiesterase 5 (PDE5) activity in fetal pulmonary artery smooth muscle cells (FPASMC) and in ventilated neonatal lambs. PDE5 degrades cyclic GMP (cGMP) and inhibits nitric oxide (NO)-mediated cGMP-dependent vasorelaxation. We sought to determine the mechanism by which hyperoxia initiates reactive oxygen species (ROS) production and regulates PDE5. Results: Thirty minutes of hyperoxia increased mitochondrial ROS versus normoxia (30.3±1.7% vs. 21.1±2.8%), but had no effect on cytosolic ROS, measured by roGFP, a ratiometric protein thiol redox sensor. Hyperoxia increased PDE5 activity (220±39%) and decreased cGMP responsiveness to NO (37±17%). Mitochondrial catalase overexpression attenuated hyperoxia-induced mitochondrial roGFP oxidation, compared to FPASMC infected with empty adenoviral vector (50±3% of control) or mitochondrial superoxide dismutase. MitoTEMPO, mitochondrial catalase, and DT-3, a cGMP-dependent protein kinase I alpha inhibitor, decreased PDE5 activity (32±13%, 26±21%, and 63±10% of control, respectively), and restored cGMP responsiveness to NO (147±16%,172±29%, and 189±43% of control, respectively). C57Bl6 mice exposed to 90%-100% O 2 for 45 min±mechanical ventilation had increased PA PDE5 activity (206±39% and 235±75%, respectively). Innovation: This is the first description that hyperoxia induces ROS in the mitochondrial matrix prior to the cytosol. Our results indicate that short hyperoxia exposures can produce significant changes in critical cellular signaling pathways. Conclusions: These results indicate that mitochondrial matrix oxidant signals generated during hyperoxia, specifically H 2O 2, activate PDE5 in a cGMP-dependent protein kinase-dependent manner in pulmonary vascular smooth muscle cells.

Original languageEnglish (US)
Pages (from-to)460-470
Number of pages11
JournalAntioxidants and Redox Signaling
Volume17
Issue number3
DOIs
StatePublished - Aug 1 2012

ASJC Scopus subject areas

  • Molecular Biology
  • Biochemistry
  • Physiology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells'. Together they form a unique fingerprint.

Cite this