Abstract
1196DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer and micrometer length scales. These structures, which would be difficult to construct via other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
Original language | English (US) |
---|---|
Title of host publication | Spherical Nucleic Acids |
Subtitle of host publication | Volume 3 |
Publisher | Jenny Stanford Publishing |
Pages | 1195-1208 |
Number of pages | 14 |
Volume | 3 |
ISBN (Electronic) | 9781000092486 |
ISBN (Print) | 9789814877237 |
DOIs | |
State | Published - Jan 1 2021 |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Engineering
- General Chemistry