Bursty Star Formation Naturally Explains the Abundance of Bright Galaxies at Cosmic Dawn

Guochao Sun*, Claude André Faucher-Giguère, Christopher C. Hayward, Xuejian Shen, Andrew Wetzel, Rachel K. Cochrane

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Recent discoveries of a significant population of bright galaxies at cosmic dawn z ≳ 10 have enabled critical tests of cosmological galaxy formation models. In particular, the bright end of the galaxys’ UV luminosity functions (UVLFs) appear higher than predicted by many models. Using approximately 25,000 galaxy snapshots at 8 ≤ z ≤ 12 in a suite of FIRE-2 cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project, we show that the observed abundance of UV-bright galaxies at cosmic dawn is reproduced in these simulations with a multichannel implementation of standard stellar feedback processes, without any fine-tuning. Notably, we find no need to invoke previously suggested modifications, such as a nonstandard cosmology, a top-heavy stellar initial mass function, or a strongly enhanced star formation efficiency. We contrast the UVLFs predicted by bursty star formation in these original simulations to those derived from star formation histories (SFHs) smoothed over prescribed timescales (e.g., 100 Myr). The comparison demonstrates that the strongly time-variable SFHs predicted by the FIRE simulations play a key role in correctly reproducing the observed, bright-end UVLFs at cosmic dawn: the bursty SFHs induce order-or-magnitude changes in the abundance of UV-bright (M UV ≲ −20) galaxies at z ≳ 10. The predicted bright-end UVLFs are consistent with both the spectroscopically confirmed population and the photometrically selected candidates. We also find good agreement between the predicted and observationally inferred integrated UV luminosity densities, which evolve more weakly with redshift in FIRE than suggested by some other models.

Original languageEnglish (US)
Article numberL35
JournalAstrophysical Journal Letters
Volume955
Issue number2
DOIs
StatePublished - Oct 1 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Bursty Star Formation Naturally Explains the Abundance of Bright Galaxies at Cosmic Dawn'. Together they form a unique fingerprint.

Cite this