TY - JOUR
T1 - Bursty Star Formation Naturally Explains the Abundance of Bright Galaxies at Cosmic Dawn
AU - Sun, Guochao
AU - Faucher-Giguère, Claude André
AU - Hayward, Christopher C.
AU - Shen, Xuejian
AU - Wetzel, Andrew
AU - Cochrane, Rachel K.
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - Recent discoveries of a significant population of bright galaxies at cosmic dawn z ≳ 10 have enabled critical tests of cosmological galaxy formation models. In particular, the bright end of the galaxys’ UV luminosity functions (UVLFs) appear higher than predicted by many models. Using approximately 25,000 galaxy snapshots at 8 ≤ z ≤ 12 in a suite of FIRE-2 cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project, we show that the observed abundance of UV-bright galaxies at cosmic dawn is reproduced in these simulations with a multichannel implementation of standard stellar feedback processes, without any fine-tuning. Notably, we find no need to invoke previously suggested modifications, such as a nonstandard cosmology, a top-heavy stellar initial mass function, or a strongly enhanced star formation efficiency. We contrast the UVLFs predicted by bursty star formation in these original simulations to those derived from star formation histories (SFHs) smoothed over prescribed timescales (e.g., 100 Myr). The comparison demonstrates that the strongly time-variable SFHs predicted by the FIRE simulations play a key role in correctly reproducing the observed, bright-end UVLFs at cosmic dawn: the bursty SFHs induce order-or-magnitude changes in the abundance of UV-bright (M UV ≲ −20) galaxies at z ≳ 10. The predicted bright-end UVLFs are consistent with both the spectroscopically confirmed population and the photometrically selected candidates. We also find good agreement between the predicted and observationally inferred integrated UV luminosity densities, which evolve more weakly with redshift in FIRE than suggested by some other models.
AB - Recent discoveries of a significant population of bright galaxies at cosmic dawn z ≳ 10 have enabled critical tests of cosmological galaxy formation models. In particular, the bright end of the galaxys’ UV luminosity functions (UVLFs) appear higher than predicted by many models. Using approximately 25,000 galaxy snapshots at 8 ≤ z ≤ 12 in a suite of FIRE-2 cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project, we show that the observed abundance of UV-bright galaxies at cosmic dawn is reproduced in these simulations with a multichannel implementation of standard stellar feedback processes, without any fine-tuning. Notably, we find no need to invoke previously suggested modifications, such as a nonstandard cosmology, a top-heavy stellar initial mass function, or a strongly enhanced star formation efficiency. We contrast the UVLFs predicted by bursty star formation in these original simulations to those derived from star formation histories (SFHs) smoothed over prescribed timescales (e.g., 100 Myr). The comparison demonstrates that the strongly time-variable SFHs predicted by the FIRE simulations play a key role in correctly reproducing the observed, bright-end UVLFs at cosmic dawn: the bursty SFHs induce order-or-magnitude changes in the abundance of UV-bright (M UV ≲ −20) galaxies at z ≳ 10. The predicted bright-end UVLFs are consistent with both the spectroscopically confirmed population and the photometrically selected candidates. We also find good agreement between the predicted and observationally inferred integrated UV luminosity densities, which evolve more weakly with redshift in FIRE than suggested by some other models.
UR - http://www.scopus.com/inward/record.url?scp=85175316176&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85175316176&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/acf85a
DO - 10.3847/2041-8213/acf85a
M3 - Article
AN - SCOPUS:85175316176
SN - 2041-8205
VL - 955
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L35
ER -