Bypassing holes in sensor networks: Load-balance vs. latency

Goce Trajcevski*, Fan Zhou, Roberto Tamassia, Besim Avci, Peter Scheuermann, Ashfaq Khokhar

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

This work addresses the problem of geographic routing in the presence of holes or voids in wireless sensor networks. We postulate that, once the boundary of the hole has been established, relying on the existing algorithms for bypassing it may cause severe depletion of the energy reserves among the nodes at (or near) that boundary. This, in turn, may soon render some of those nodes useless for any routing (and/or sensing) purposes, thereby effectively enlarging the size of the pre-existing hole. To extend the lifetime of the nodes along the boundary of a given hole, we propose two heuristic approaches which aim at relieving some of the routing load of the boundary nodes. Towards that, our approaches propose that some of the routes that would otherwise need to bypass the hole along the boundary, should instead start to deviate from their original path further from the hole. Our experiments demonstrate that the proposed approaches not only increase the lifetime of the nodes along the boundary of a given hole, but also yield a more uniform depletion of the energy reserves in its vicinity.

Original languageEnglish (US)
Title of host publication2011 IEEE Global Telecommunications Conference, GLOBECOM 2011
DOIs
StatePublished - Dec 1 2011
Event54th Annual IEEE Global Telecommunications Conference: "Energizing Global Communications", GLOBECOM 2011 - Houston, TX, United States
Duration: Dec 5 2011Dec 9 2011

Publication series

NameGLOBECOM - IEEE Global Telecommunications Conference

Other

Other54th Annual IEEE Global Telecommunications Conference: "Energizing Global Communications", GLOBECOM 2011
CountryUnited States
CityHouston, TX
Period12/5/1112/9/11

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Bypassing holes in sensor networks: Load-balance vs. latency'. Together they form a unique fingerprint.

Cite this