Abstract
Patients with sickle cell disease (SCD) experience lifelong struggles with both chronic and acute pain, often requiring medical interventMaion. Pain can be managed with medications, but dosages must balance the goal of pain mitigation against the risks of tolerance, addiction and other adverse effects. Setting appropriate dosages requires knowledge of a patient’s subjective pain, but collecting pain reports from patients can be difficult for clinicians and disruptive for patients, and is only possible when patients are awake and communicative. Here we investigate methods for estimating SCD patients’ pain levels indirectly using vital signs that are routinely collected and documented in medical records. Using machine learning, we develop both sequential and non-sequential probabilistic models that can be used to infer pain levels or changes in pain from sequences of these physiological measures. We demonstrate that these models outperform null models and that objective physiological data can be used to inform estimates for subjective pain.
Original language | English (US) |
---|---|
Article number | e1008542 |
Journal | PLoS computational biology |
Volume | 17 |
Issue number | 3 |
DOIs | |
State | Published - Mar 11 2021 |
ASJC Scopus subject areas
- Genetics
- Ecology, Evolution, Behavior and Systematics
- Cellular and Molecular Neuroscience
- Molecular Biology
- Ecology
- Computational Theory and Mathematics
- Modeling and Simulation