TY - GEN
T1 - Cardiac Function Monitoring for Patients Undergoing Cancer Treatments Using Wearable Seismocardiography
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
AU - Hasan Shandhi, Md Mobashir
AU - Aras, Mandar
AU - Wynn, Sarra
AU - Fan, Joanna
AU - Heller, J. Alex
AU - Etemadi, Mozziyar
AU - Klein, Liviu
AU - Inan, Omer T.
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - Advances in cancer therapeutics have dramatically improved the survival rate and quality of life in patients affected by various cancers, but have been accompanied by treatment-related cardiotoxicity, e.g. left ventricular (LV) dysfunction and/or overt heart failure (HF). Cardiologists thus need to assess cancer treatment-related cardiotoxic risks and have close followups for cancer survivors and patients undergoing cancer treatments using serial echocardiography exams and cardiovascular biomarkers testing. Unfortunately, the cost-prohibitive nature of echocardiography has made these routine follow-ups difficult and not accessible to the growing number of cancer survivors and patients undergoing cancer treatments. There is thus a need to develop a wearable system that can yield similar information at a minimal cost and can be used for remote monitoring of these patients. In this proof-of-concept study, we have investigated the use of wearable seismocardiography (SCG) to monitor LV function non-invasively for patients undergoing cancer treatment. A total of 12 subjects (six with normal LV relaxation, five with impaired relaxation and one with pseudo-normal relaxation) underwent routine echocardiography followed by a standard six-minute walk test. Wearable SCG and electrocardiogram signals were collected during the six-minute walk test and, later, the signal features were compared between subjects with normal and impaired LV relaxation. Pre-ejection period (PEP) from SCG decreased significantly (p < 0.05) during exercise for the subjects with impaired relaxation compared to the subjects with normal relaxation, and changes in PEP/LV ejection time (LVET) were also significantly different between these two groups (p < 0.05). These results suggest that wearable SCG may enable monitoring of patients undergoing cancer treatments by assessing cardiotoxicity.
AB - Advances in cancer therapeutics have dramatically improved the survival rate and quality of life in patients affected by various cancers, but have been accompanied by treatment-related cardiotoxicity, e.g. left ventricular (LV) dysfunction and/or overt heart failure (HF). Cardiologists thus need to assess cancer treatment-related cardiotoxic risks and have close followups for cancer survivors and patients undergoing cancer treatments using serial echocardiography exams and cardiovascular biomarkers testing. Unfortunately, the cost-prohibitive nature of echocardiography has made these routine follow-ups difficult and not accessible to the growing number of cancer survivors and patients undergoing cancer treatments. There is thus a need to develop a wearable system that can yield similar information at a minimal cost and can be used for remote monitoring of these patients. In this proof-of-concept study, we have investigated the use of wearable seismocardiography (SCG) to monitor LV function non-invasively for patients undergoing cancer treatment. A total of 12 subjects (six with normal LV relaxation, five with impaired relaxation and one with pseudo-normal relaxation) underwent routine echocardiography followed by a standard six-minute walk test. Wearable SCG and electrocardiogram signals were collected during the six-minute walk test and, later, the signal features were compared between subjects with normal and impaired LV relaxation. Pre-ejection period (PEP) from SCG decreased significantly (p < 0.05) during exercise for the subjects with impaired relaxation compared to the subjects with normal relaxation, and changes in PEP/LV ejection time (LVET) were also significantly different between these two groups (p < 0.05). These results suggest that wearable SCG may enable monitoring of patients undergoing cancer treatments by assessing cardiotoxicity.
UR - http://www.scopus.com/inward/record.url?scp=85091015006&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091015006&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9176074
DO - 10.1109/EMBC44109.2020.9176074
M3 - Conference contribution
C2 - 33018894
AN - SCOPUS:85091015006
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 4075
EP - 4078
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 20 July 2020 through 24 July 2020
ER -