TY - JOUR
T1 - Cardiovascular magnetic resonance imaging of aorto-iliac and ilio-femoral vascular calcifications using proton density-weighted in-phase stack of stars
AU - Serhal, Ali
AU - Koktzoglou, Ioannis
AU - Aouad, Pascale
AU - Carr, James C.
AU - Giri, Shivraman
AU - Morcos, Omar
AU - Edelman, Robert R.
N1 - Funding Information:
Research support, NIH grants R01 HL130093 and R21 HL126015. Research support, Siemens Healthineers. Research support, Department of Radiology, NorthShore University HealthSystem.
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/8/6
Y1 - 2018/8/6
N2 - Background: Comparing cardiovascular magnetic resonance (CMR) angiography with computed tomography angiography (CTA), a major deficiency has been its inability to reliably image peripheral vascular calcifications that may impact the choice of interventional strategy and influence patient prognosis. Recently, MRI using a proton density-weighted, in-phase stack of stars (PDIP-SOS) technique has proved capable of detecting these calcifications. The goal of the present study was two-fold: (1) to determine whether magnetic field strength impacts the apparent size and conspicuity of ilio-femoral arterial calcifications; and (2) to determine whether the technique can be accurately applied to image aorto-iliac arterial calcifications. Main body: Two patient cohorts were studied. For the first cohort, ilio-femoral arterial calcifications were imaged at 1.5 Tesla in 20 patients and at 3 Tesla in 12 patients. For the second cohort, aorto-iliac arterial calcifications were imaged in 10 patients at 3 Tesla and one patient at 1.5 Tesla. Qualitative image analysis as well as quantitative analysis using a semi-automated technique were performed using CTA as the reference standard. Qualitatively, most PDIP-SOS CMR images showed good-to-excellent confidence to detect vascular calcifications, with good-to-excellent inter-reader agreement (κ = 0.67 for ilio-femoral region, P < 0.001; κ = 0.80 for aorto-iliac region, P < 0.01). There was an overall excellent correlation (r = 0.98, P < 0.001) and agreement (intraclass correlation coefficient = 0.97, P < 0.001) between PDIP-SOS CMR and CTA measures of calcification volume in both regions, with no overt difference in performance at 1.5 Tesla vs. 3 Tesla for ilio-femoral calcifications. CMR lesion volumes were slightly lower than those measured for CTA. Conclusion: Using PDIP-SOS CMR, aorto-iliac and ilio-femoral calcifications could be simultaneously evaluated at 3 Tesla in less than six minutes with excellent correlation and agreement to CTA. Our results suggest that PDIP-SOS CMR provides a reliable alternative to CT for pre-interventional evaluation of peripheral vascular calcium burden.
AB - Background: Comparing cardiovascular magnetic resonance (CMR) angiography with computed tomography angiography (CTA), a major deficiency has been its inability to reliably image peripheral vascular calcifications that may impact the choice of interventional strategy and influence patient prognosis. Recently, MRI using a proton density-weighted, in-phase stack of stars (PDIP-SOS) technique has proved capable of detecting these calcifications. The goal of the present study was two-fold: (1) to determine whether magnetic field strength impacts the apparent size and conspicuity of ilio-femoral arterial calcifications; and (2) to determine whether the technique can be accurately applied to image aorto-iliac arterial calcifications. Main body: Two patient cohorts were studied. For the first cohort, ilio-femoral arterial calcifications were imaged at 1.5 Tesla in 20 patients and at 3 Tesla in 12 patients. For the second cohort, aorto-iliac arterial calcifications were imaged in 10 patients at 3 Tesla and one patient at 1.5 Tesla. Qualitative image analysis as well as quantitative analysis using a semi-automated technique were performed using CTA as the reference standard. Qualitatively, most PDIP-SOS CMR images showed good-to-excellent confidence to detect vascular calcifications, with good-to-excellent inter-reader agreement (κ = 0.67 for ilio-femoral region, P < 0.001; κ = 0.80 for aorto-iliac region, P < 0.01). There was an overall excellent correlation (r = 0.98, P < 0.001) and agreement (intraclass correlation coefficient = 0.97, P < 0.001) between PDIP-SOS CMR and CTA measures of calcification volume in both regions, with no overt difference in performance at 1.5 Tesla vs. 3 Tesla for ilio-femoral calcifications. CMR lesion volumes were slightly lower than those measured for CTA. Conclusion: Using PDIP-SOS CMR, aorto-iliac and ilio-femoral calcifications could be simultaneously evaluated at 3 Tesla in less than six minutes with excellent correlation and agreement to CTA. Our results suggest that PDIP-SOS CMR provides a reliable alternative to CT for pre-interventional evaluation of peripheral vascular calcium burden.
KW - CT angiography
KW - Magnetic resonance imaging
KW - Peripheral arterial disease
KW - Quiescent-interval slice-selective
KW - Stack of stars
KW - Vascular calcification
UR - http://www.scopus.com/inward/record.url?scp=85051132830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051132830&partnerID=8YFLogxK
U2 - 10.1186/s12968-018-0479-2
DO - 10.1186/s12968-018-0479-2
M3 - Article
C2 - 30078377
AN - SCOPUS:85051132830
SN - 1097-6647
VL - 20
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
IS - 1
ER -