Cascade-based attacks on complex networks

Adilson E. Motter*, Ying Cheng Lai

*Corresponding author for this work

Research output: Contribution to journalArticle

1195 Scopus citations

Abstract

We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.

Original languageEnglish (US)
Pages (from-to)4
Number of pages1
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume66
Issue number6
DOIs
StatePublished - Dec 20 2002

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Cascade-based attacks on complex networks'. Together they form a unique fingerprint.

  • Cite this