12 Citations (Scopus)

Abstract

Most computer vision systems are concernedwith computing the whats and wheres of a scene. We describe a set of programs concerned instead with computing the whys and hows — why the scene is the way it is, and how an agent can interact withit. The basis of our approach lies in the construction ofa causal explanation of a scene — a representation that describes what affects what in the scene, how these elements affect each other, and why they affect each other the way they do. Such explanations, by definition and design, must encompass representations of the potentials for action in ascene, and thus form a natural basis for describinghow scene elements serve purposes — i.e., functional descriptions. As a concrete case study in causal scene understanding, this paper focuses primarily on ways to exploit the causality of objects in static equilibrium, in particular, the causality of support. We describe three camera-to-commentary vision systems, operating in three different domains, that develop causal explanations of scenes from visual images of those scenes and, in the process, provide novel solutions to a number of traditional problems in visionand robotics, including occlusion, focus of attention, and grasp planning. We also show how the kinds of causal descriptions produced by these systems can be exploited to physically interact with the scene.

Original languageEnglish (US)
Pages (from-to)215-231
Number of pages17
JournalComputer Vision and Image Understanding
Volume62
Issue number2
DOIs
StatePublished - Sep 1995

Fingerprint

Computer vision
Robotics
Cameras
Planning

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition

Cite this

Cooper, Paul R. ; Birnbaum, Lawrence A ; Brand, Matthew E. / Causal sceneunderstanding. In: Computer Vision and Image Understanding. 1995 ; Vol. 62, No. 2. pp. 215-231.
@article{fd4258a4479e40fcad378d43df8543c8,
title = "Causal sceneunderstanding",
abstract = "Most computer vision systems are concernedwith computing the whats and wheres of a scene. We describe a set of programs concerned instead with computing the whys and hows — why the scene is the way it is, and how an agent can interact withit. The basis of our approach lies in the construction ofa causal explanation of a scene — a representation that describes what affects what in the scene, how these elements affect each other, and why they affect each other the way they do. Such explanations, by definition and design, must encompass representations of the potentials for action in ascene, and thus form a natural basis for describinghow scene elements serve purposes — i.e., functional descriptions. As a concrete case study in causal scene understanding, this paper focuses primarily on ways to exploit the causality of objects in static equilibrium, in particular, the causality of support. We describe three camera-to-commentary vision systems, operating in three different domains, that develop causal explanations of scenes from visual images of those scenes and, in the process, provide novel solutions to a number of traditional problems in visionand robotics, including occlusion, focus of attention, and grasp planning. We also show how the kinds of causal descriptions produced by these systems can be exploited to physically interact with the scene.",
author = "Cooper, {Paul R.} and Birnbaum, {Lawrence A} and Brand, {Matthew E.}",
year = "1995",
month = "9",
doi = "10.1006/cviu.1995.1051",
language = "English (US)",
volume = "62",
pages = "215--231",
journal = "Computer Vision and Image Understanding",
issn = "1077-3142",
publisher = "Academic Press Inc.",
number = "2",

}

Causal sceneunderstanding. / Cooper, Paul R.; Birnbaum, Lawrence A; Brand, Matthew E.

In: Computer Vision and Image Understanding, Vol. 62, No. 2, 09.1995, p. 215-231.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Causal sceneunderstanding

AU - Cooper, Paul R.

AU - Birnbaum, Lawrence A

AU - Brand, Matthew E.

PY - 1995/9

Y1 - 1995/9

N2 - Most computer vision systems are concernedwith computing the whats and wheres of a scene. We describe a set of programs concerned instead with computing the whys and hows — why the scene is the way it is, and how an agent can interact withit. The basis of our approach lies in the construction ofa causal explanation of a scene — a representation that describes what affects what in the scene, how these elements affect each other, and why they affect each other the way they do. Such explanations, by definition and design, must encompass representations of the potentials for action in ascene, and thus form a natural basis for describinghow scene elements serve purposes — i.e., functional descriptions. As a concrete case study in causal scene understanding, this paper focuses primarily on ways to exploit the causality of objects in static equilibrium, in particular, the causality of support. We describe three camera-to-commentary vision systems, operating in three different domains, that develop causal explanations of scenes from visual images of those scenes and, in the process, provide novel solutions to a number of traditional problems in visionand robotics, including occlusion, focus of attention, and grasp planning. We also show how the kinds of causal descriptions produced by these systems can be exploited to physically interact with the scene.

AB - Most computer vision systems are concernedwith computing the whats and wheres of a scene. We describe a set of programs concerned instead with computing the whys and hows — why the scene is the way it is, and how an agent can interact withit. The basis of our approach lies in the construction ofa causal explanation of a scene — a representation that describes what affects what in the scene, how these elements affect each other, and why they affect each other the way they do. Such explanations, by definition and design, must encompass representations of the potentials for action in ascene, and thus form a natural basis for describinghow scene elements serve purposes — i.e., functional descriptions. As a concrete case study in causal scene understanding, this paper focuses primarily on ways to exploit the causality of objects in static equilibrium, in particular, the causality of support. We describe three camera-to-commentary vision systems, operating in three different domains, that develop causal explanations of scenes from visual images of those scenes and, in the process, provide novel solutions to a number of traditional problems in visionand robotics, including occlusion, focus of attention, and grasp planning. We also show how the kinds of causal descriptions produced by these systems can be exploited to physically interact with the scene.

UR - http://www.scopus.com/inward/record.url?scp=0029373775&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029373775&partnerID=8YFLogxK

U2 - 10.1006/cviu.1995.1051

DO - 10.1006/cviu.1995.1051

M3 - Article

AN - SCOPUS:0029373775

VL - 62

SP - 215

EP - 231

JO - Computer Vision and Image Understanding

JF - Computer Vision and Image Understanding

SN - 1077-3142

IS - 2

ER -