Celastrols as inducers of the heat shock response and cytoprotection

Sandy D. Westerheide, Joshua D. Bosman, Bessie N.A. Mbadugha, Tiara L.A. Kawahara, Gen Matsumoto, Soojin Kim, Wenxin Gu, John P. Devlin, Richard B. Silverman, Richard I. Morimoto*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

360 Scopus citations


Alterations in protein folding and the regulation of confermational states have become increasingly important to the functionality of key molecules in signaling, cell growth, and cell death. Molecular chaperones, because of their properties in protein quality control, afford conformational flexibility to proteins and serve to integrate stress-signaling events that influence aging and a range of diseases including cancer, cystic fibrosis, amyloidoses, and neurodegenerative diseases. We describe here characteristics of celastrol, a quinone methide triterpene and an active component from Chinese herbal medicine identified in a screen of bioactive small molecules that activates the human heat shock response. From a structure/function examination, the celastrol structure is remarkably specific and activates heat shock transcription factor 1 (HSF1) with kinetics similar to those of heat stress, as determined by the induction of HSF1 DNA binding, hyperphosphorylation of HSF1, and expression of chaperone genes. Celastrol can activate heat shock gene transcription synergistically with other stresses and exhibits cytoprotection against subsequent exposures to other forms of lethal cell stress. These results suggest that celastrols exhibit promise as a new class of pharmacologically active regulators of the heat shock response.

Original languageEnglish (US)
Pages (from-to)56053-56060
Number of pages8
JournalJournal of Biological Chemistry
Issue number53
StatePublished - Dec 31 2004

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Celastrols as inducers of the heat shock response and cytoprotection'. Together they form a unique fingerprint.

Cite this