Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis

Bin Zhao, Li Li, Lloyd Wang, Cun Yu Wang, Jindan Yu, Kun Liang Guan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

587 Scopus citations

Abstract

Cell attachment to the extracellular matrix (ECM) is crucial to cell physiology such as polarity, motility, and proliferation. In normal cells, loss of attachment to the ECM induces a specific type of apoptosis, termed anoikis. Resistance to anoikis in cancer cells promotes their survival in circulation and dispersion to distant anatomic sites, leading to tumor metastasis. The Yes-associated protein (YAP) transcription coactivator is a human oncogene and a key regulator of organ size. The Hippo tumor suppressor pathway phosphorylates and inhibits YAP. However, little is known about the signals that regulate the Hippo pathway. Here we report that through cytoskeleton reorganization, cell detachment activates the Hippo pathway kinases Lats1/2 and leads to YAP phosphorylation and inhibition. The detachment-induced YAP inactivation is required for anoikis in nontransformed cells, whereas in cancer cells with deregulation of the Hippo pathway, knockdown of YAP and TAZ restores anoikis. Furthermore, we provided evidence that Lats1/2 expression level is indeed significantly downregulated in metastatic prostate cancer. Our findings provide a novel connection between cell attachment and anoikis through the Hippo pathway and have important implications in cancer therapeutics.

Original languageEnglish (US)
Pages (from-to)54-68
Number of pages15
JournalGenes and Development
Volume26
Issue number1
DOIs
StatePublished - Jan 1 2012

Keywords

  • Anoikis
  • Cancer metastasis
  • Lats
  • Phosphorylation
  • YAP

ASJC Scopus subject areas

  • Genetics
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis'. Together they form a unique fingerprint.

Cite this