Abstract
Rule-based reasoning, a fundamental type of legal reasoning, enables us to draw conclusions by accurately applying a rule to a set of facts. We explore causal language models as rule-based reasoners, specifically with respect to compositional rules - rules consisting of multiple elements which form a complex logical expression. Reasoning about compositional rules is challenging because it requires multiple reasoning steps, and attending to the logical relationships between elements. We introduce a new prompting method, Chain of Logic, which elicits rule-based reasoning through decomposition (solving elements as independent threads of logic), and recomposition (recombining these sub-answers to resolve the underlying logical expression). This method was inspired by the IRAC (Issue, Rule, Application, Conclusion) framework, a sequential reasoning approach used by lawyers. We evaluate chain of logic across eight rule-based reasoning tasks involving three distinct compositional rules from the LegalBench benchmark and demonstrate it consistently outperforms other prompting methods, including chain of thought and self-ask, using open-source and commercial language models.
Original language | English (US) |
---|---|
Title of host publication | 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference |
Editors | Lun-Wei Ku, Andre Martins, Vivek Srikumar |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 2721-2733 |
Number of pages | 13 |
ISBN (Electronic) | 9798891760998 |
State | Published - 2024 |
Event | Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand Duration: Aug 11 2024 → Aug 16 2024 |
Publication series
Name | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
ISSN (Print) | 0736-587X |
Conference
Conference | Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 |
---|---|
Country/Territory | Thailand |
City | Hybrid, Bangkok |
Period | 8/11/24 → 8/16/24 |
Funding
This work was supported in part by Adobe Research. The authors thank Neel Guha for helpful discussions related to LegalBench.
ASJC Scopus subject areas
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics