TY - JOUR
T1 - Chalcogels
T2 - Porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation
AU - Bag, Santanu
AU - Kanatzidis, Mercouri
PY - 2010/10/27
Y1 - 2010/10/27
N2 - We report the synthesis of metal-chalcogenide gels and aerogels from anionic chalcogenide clusters and linking metal ions. Metal ions such as Sb 3+ and Sn2+, respectively chelated with tartrate and acetate ligands, react in solution with the chalcogenide clusters to form extended polymeric networks that exhibit gelation phenomena. Chalcogenide cluster anions with different charge densities, such as [Sn2S 6]4- and [SnS4]4-, were employed. In situ rheological measurements during gelation showed that a higher charge density on the chalcogenide cluster favors formation of a rigid gel network. Aerogels obtained from the gels after supercritical drying have BET surface areas from 114 to 368 m2/g. Electron microscopy images coupled with nitrogen adsorption measurements showed the pores are micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) regions. These chalcogels possess band gaps in the range of 1.00-2.00 eV and selectively adsorb polarizable gases. A 2-fold increase in selectivity toward CO2/C2H6 over H2 was observed for the Pt/Sb/Ge4Se10- containing aerogel compared to aerogel containing Pt2Ge 4S10. The experimental results suggest that high selectivity in gas adsorption is achievable with high-surface-area chalcogenide materials containing heavy polarizable elements.
AB - We report the synthesis of metal-chalcogenide gels and aerogels from anionic chalcogenide clusters and linking metal ions. Metal ions such as Sb 3+ and Sn2+, respectively chelated with tartrate and acetate ligands, react in solution with the chalcogenide clusters to form extended polymeric networks that exhibit gelation phenomena. Chalcogenide cluster anions with different charge densities, such as [Sn2S 6]4- and [SnS4]4-, were employed. In situ rheological measurements during gelation showed that a higher charge density on the chalcogenide cluster favors formation of a rigid gel network. Aerogels obtained from the gels after supercritical drying have BET surface areas from 114 to 368 m2/g. Electron microscopy images coupled with nitrogen adsorption measurements showed the pores are micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) regions. These chalcogels possess band gaps in the range of 1.00-2.00 eV and selectively adsorb polarizable gases. A 2-fold increase in selectivity toward CO2/C2H6 over H2 was observed for the Pt/Sb/Ge4Se10- containing aerogel compared to aerogel containing Pt2Ge 4S10. The experimental results suggest that high selectivity in gas adsorption is achievable with high-surface-area chalcogenide materials containing heavy polarizable elements.
UR - http://www.scopus.com/inward/record.url?scp=77958473403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77958473403&partnerID=8YFLogxK
U2 - 10.1021/ja1059284
DO - 10.1021/ja1059284
M3 - Article
C2 - 20925321
AN - SCOPUS:77958473403
SN - 0002-7863
VL - 132
SP - 14951
EP - 14959
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 42
ER -