TY - GEN
T1 - Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury
AU - Pierella, C.
AU - De Luca, A.
AU - Tasso, E.
AU - Cervetto, F.
AU - Gamba, S.
AU - Losio, L.
AU - Quinland, E.
AU - Venegoni, A.
AU - Mandraccia, S.
AU - Muller, I.
AU - Massone, A.
AU - Mussa-Ivaldi, F. A.
AU - Casadio, M.
N1 - Funding Information:
Research supported by NIDRR grant H133E120010, NIH/NICHHD grant 1R01HD072080 and with the kind contribution of the Ministry of Foreign Affairs, Unit for S/T cooperation.
Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/11
Y1 - 2017/8/11
N2 - Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games. The BMI allowed the mapping between body and cursor spaces to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change our subjects' behavior, who initially used almost exclusively their proximal upper body-shoulders and arms - for using the BMI. By the end of training, cursor control was shifted toward more distal body regions - forearms instead of upper arms - with an increase of mobility and strength of all the degrees of freedom involved in the control. The clinical tests and the electromyographic signals from the main muscles of the upper body confirmed the positive effect of the training. Encouraging the subjects to explore different and sometimes unusual movement combinations was beneficial for recovering distal arm functions and for increasing their overall mobility.
AB - Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games. The BMI allowed the mapping between body and cursor spaces to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change our subjects' behavior, who initially used almost exclusively their proximal upper body-shoulders and arms - for using the BMI. By the end of training, cursor control was shifted toward more distal body regions - forearms instead of upper arms - with an increase of mobility and strength of all the degrees of freedom involved in the control. The clinical tests and the electromyographic signals from the main muscles of the upper body confirmed the positive effect of the training. Encouraging the subjects to explore different and sometimes unusual movement combinations was beneficial for recovering distal arm functions and for increasing their overall mobility.
UR - http://www.scopus.com/inward/record.url?scp=85034861942&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034861942&partnerID=8YFLogxK
U2 - 10.1109/ICORR.2017.8009396
DO - 10.1109/ICORR.2017.8009396
M3 - Conference contribution
C2 - 28813968
AN - SCOPUS:85034861942
T3 - IEEE International Conference on Rehabilitation Robotics
SP - 1100
EP - 1105
BT - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
A2 - Ajoudani, Arash
A2 - Artemiadis, Panagiotis
A2 - Beckerle, Philipp
A2 - Grioli, Giorgio
A2 - Lambercy, Olivier
A2 - Mombaur, Katja
A2 - Novak, Domen
A2 - Rauter, Georg
A2 - Rodriguez Guerrero, Carlos
A2 - Salvietti, Gionata
A2 - Amirabdollahian, Farshid
A2 - Balasubramanian, Sivakumar
A2 - Castellini, Claudio
A2 - Di Pino, Giovanni
A2 - Guo, Zhao
A2 - Hughes, Charmayne
A2 - Iida, Fumiya
A2 - Lenzi, Tommaso
A2 - Ruffaldi, Emanuele
A2 - Sergi, Fabrizio
A2 - Soh, Gim Song
A2 - Caimmi, Marco
A2 - Cappello, Leonardo
A2 - Carloni, Raffaella
A2 - Carlson, Tom
A2 - Casadio, Maura
A2 - Coscia, Martina
A2 - De Santis, Dalia
A2 - Forner-Cordero, Arturo
A2 - Howard, Matthew
A2 - Piovesan, Davide
A2 - Siqueira, Adriano
A2 - Sup, Frank
A2 - Lorenzo, Masia
A2 - Catalano, Manuel Giuseppe
A2 - Lee, Hyunglae
A2 - Menon, Carlo
A2 - Raspopovic, Stanisa
A2 - Rastgaar, Mo
A2 - Ronsse, Renaud
A2 - van Asseldonk, Edwin
A2 - Vanderborght, Bram
A2 - Venkadesan, Madhusudhan
A2 - Bianchi, Matteo
A2 - Braun, David
A2 - Godfrey, Sasha Blue
A2 - Mastrogiovanni, Fulvio
A2 - McDaid, Andrew
A2 - Rossi, Stefano
A2 - Zenzeri, Jacopo
A2 - Formica, Domenico
A2 - Karavas, Nikolaos
A2 - Marchal-Crespo, Laura
A2 - Reed, Kyle B.
A2 - Tagliamonte, Nevio Luigi
A2 - Burdet, Etienne
A2 - Basteris, Angelo
A2 - Campolo, Domenico
A2 - Deshpande, Ashish
A2 - Dubey, Venketesh
A2 - Hussain, Asif
A2 - Sanguineti, Vittorio
A2 - Unal, Ramazan
A2 - Caurin, Glauco Augusto de Paula
A2 - Koike, Yasuharu
A2 - Mazzoleni, Stefano
A2 - Park, Hyung-Soon
A2 - Remy, C. David
A2 - Saint-Bauzel, Ludovic
A2 - Tsagarakis, Nikos
A2 - Veneman, Jan
A2 - Zhang, Wenlong
PB - IEEE Computer Society
T2 - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
Y2 - 17 July 2017 through 20 July 2017
ER -