Changes of reflex, non-reflex and torque generation properties of spastic ankle plantar flexors induced by intelligent stretching

S. G. Chung*, Z. Bai, W. Z. Rymer, L. Q. Zhang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

Spasticity, contracture, and muscle weakness are major sources of disability in stroke. Changes of torque-generating capacity as well as reflex and non-reflex properties of ankle plantar flexors induced by strenuous stretching in chronic hemiplegia were investigated. Twelve subjects with a unilateral stroke and 10 healthy controls underwent 30 minutes of strenuous intelligent stretching treatment. Reflex and non-reflex components of spastic hypertonia and force-generating capacity of ankle plantar flexors were investigated. Dorsiflexion (DF) range of motion (ROM) was increased (p=0.002) and passive stiffness and passive resistant torque of the spastic muscles were decreased (p=0.004 and 0.007, respectively), while reflex hyper-excitability diminished slightly but with no statistical significance. The maximal voluntary contraction (MVC) torque of the spastic ankle plantar flexors was increased after the forceful stretching treatment (p=0.041). In contrast, the stretching treatment of the healthy plantar flexors did not change any of the variables measured before and after stretching. The stroke subjects who gained more DF ROM or larger decrement of stiffness achieved greater increment of the peak torque generation after the stretching (r=0.597 with p=0.040 and r-0.746 with p=0.005, respectively). These results suggest that the strenuous dynamic stretching could improve the force-generating capacity of spastic muscles as well as reduce the passive stiffness and increase ROM.

Original languageEnglish (US)
Title of host publicationProceedings of the 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3672-3675
Number of pages4
ISBN (Print)0780387406, 9780780387409
DOIs
StatePublished - 2005
Event2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005 - Shanghai, China
Duration: Sep 1 2005Sep 4 2005

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume7 VOLS
ISSN (Print)0589-1019

Other

Other2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
CountryChina
CityShanghai
Period9/1/059/4/05

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Changes of reflex, non-reflex and torque generation properties of spastic ankle plantar flexors induced by intelligent stretching'. Together they form a unique fingerprint.

Cite this