TY - JOUR
T1 - Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides
AU - Moore, Nicole M.
AU - Sheppard, Clayton L.
AU - Sakiyama-Elbert, Shelly E.
PY - 2009/3
Y1 - 2009/3
N2 - Endosomal escape and nuclear localization are two barriers to gene delivery that need to be addressed in the design of new nonviral gene delivery vehicles. We have previously synthesized low-toxicity polyethylene glycol (PEG)-based vehicles with endosomal escape functionalities, but it was determined that the transfection efficiency of PEG-based vehicles that escaped the endosome was still limited by poor nuclear localization. Two different nuclear localization signal (NLS) peptides, SV40 and TAT, were coupled to PEG-based vehicles with DNA-binding peptides (DBPs) to determine the effect of NLS peptides on the transfection efficiency of PEG-based gene delivery vehicles. Coupling one SV40 peptide, a classical NLS, or two TAT peptides, a nonclassical NLS, to PEG-DBP vehicles increased the transfection efficiency of PEG-DBP/DNA particles 15-fold and resulted in similar efficiency to that of a common cationic polymer vehicle, polyethylenimine (PEI). The transfection efficiency of both types of PEG-DBP-NLS particles was further increased 7-fold in the presence of chloroquine, suggesting that the transfection efficiency of PEG-DBP-NLS particles is limited by their ability to escape the endosome. To develop particles that could escape the endosome and target the nucleus, a mixture of PEG-DBP-NLS vehicles and PEG-based vehicles with DBPs and endosomal escape peptides were complexed with plasmid DNA to form multifunctional particles that had a transfection efficiency 2-3 times higher than that of PEI. Additionally, the PEG-based vehicles were less toxic and more resistant to nonspecific protein adsorption than PEI, making them an attractive alternative for nonviral gene delivery.
AB - Endosomal escape and nuclear localization are two barriers to gene delivery that need to be addressed in the design of new nonviral gene delivery vehicles. We have previously synthesized low-toxicity polyethylene glycol (PEG)-based vehicles with endosomal escape functionalities, but it was determined that the transfection efficiency of PEG-based vehicles that escaped the endosome was still limited by poor nuclear localization. Two different nuclear localization signal (NLS) peptides, SV40 and TAT, were coupled to PEG-based vehicles with DNA-binding peptides (DBPs) to determine the effect of NLS peptides on the transfection efficiency of PEG-based gene delivery vehicles. Coupling one SV40 peptide, a classical NLS, or two TAT peptides, a nonclassical NLS, to PEG-DBP vehicles increased the transfection efficiency of PEG-DBP/DNA particles 15-fold and resulted in similar efficiency to that of a common cationic polymer vehicle, polyethylenimine (PEI). The transfection efficiency of both types of PEG-DBP-NLS particles was further increased 7-fold in the presence of chloroquine, suggesting that the transfection efficiency of PEG-DBP-NLS particles is limited by their ability to escape the endosome. To develop particles that could escape the endosome and target the nucleus, a mixture of PEG-DBP-NLS vehicles and PEG-based vehicles with DBPs and endosomal escape peptides were complexed with plasmid DNA to form multifunctional particles that had a transfection efficiency 2-3 times higher than that of PEI. Additionally, the PEG-based vehicles were less toxic and more resistant to nonspecific protein adsorption than PEI, making them an attractive alternative for nonviral gene delivery.
KW - Endosomal escape
KW - Gene delivery
KW - Nonviral
KW - Nuclear localization
KW - PEG
UR - http://www.scopus.com/inward/record.url?scp=60649117131&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=60649117131&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2008.09.009
DO - 10.1016/j.actbio.2008.09.009
M3 - Article
C2 - 18926782
AN - SCOPUS:60649117131
SN - 1742-7061
VL - 5
SP - 854
EP - 864
JO - Acta Biomaterialia
JF - Acta Biomaterialia
IS - 3
ER -