TY - JOUR
T1 - Characterization of the [4Fe-4S]+ Cluster at the Active Site of Aconitase by 57Fe, 33S, and 14N Electron Nuclear Double Resonance Spectroscopy
AU - Werst, Melanie M.
AU - Houseman, Andrew L.P.
AU - Hoffman, Brian M.
AU - Kennedy, Mary Claire
AU - Beinert, Helmut
PY - 1990/11/1
Y1 - 1990/11/1
N2 - 57Fe, 33S, and l4N electron nuclear double resonance (ENDOR) studies have been performed to characterize the [4Fe-4S}+ cluster at the active site of aconitase. Q-band 57Fe ENDOR of isotopically enriched enzyme, both substrate free and in the enzyme–substrate complex, reveals four inequivalent iron sites. In agreement with Mössbauer studies [Kent et al. (1985) J. Biol. Chem. 260, 6371–6881], one of the iron ions, Fea, which is easily removed by oxidation to yield the [3Fe-4S]+ cluster of inactive aconitase, shows a dramatic change in the presence of substrate. The remaining iron sites, Feb1,2,3, show minor changes when substrate is bound. Methods devised by us for analyzing and simulating ENDOR spectra of a randomly oriented paramagnet have been used to determine the principal values and orientation relative to the g tensor for the hyperfine tensors of three of the four inequivalent iron sites of the [4Fe-4S]+ cluster, Fea, Feb2, and Feb3, in the substrate-free enzyme and the enzyme–substrate complex. The full tensor for the fourth site, Feb1, could not be obtained because its signal is seen only over a limited range of the EPR envelope. 33S ENDOR data for the enzyme–substrate complex using enzyme reconstituted with 33S show that the four inorganic bridging sulfide ions of the [4Fe-4S]+ cube have isotropic hyperfine couplings of A(S) < 12 MHz, and analysis indicates that they can be divided into two pairs, one with couplings of A(S1) ≲ 1 MHz and the other with A(S2) ~ 6–12 MHz; the analysis further places these pairs within the cube relative to the iron sites. 33S data for substrate-free enzyme is qualitatively similar and can be completely simulated by two types of S2−ion, with A(S1) ~ 7.5 and A(S2) ~ 9 MHz; the full hyperfine tensors have been determined. The hyperfine values for the two enzyme forms correspond to surprisingly small unpaired spin density on S2−. 14N ENDOR at Q-band reveals a nitrogen signal that does not change upon substrate binding.
AB - 57Fe, 33S, and l4N electron nuclear double resonance (ENDOR) studies have been performed to characterize the [4Fe-4S}+ cluster at the active site of aconitase. Q-band 57Fe ENDOR of isotopically enriched enzyme, both substrate free and in the enzyme–substrate complex, reveals four inequivalent iron sites. In agreement with Mössbauer studies [Kent et al. (1985) J. Biol. Chem. 260, 6371–6881], one of the iron ions, Fea, which is easily removed by oxidation to yield the [3Fe-4S]+ cluster of inactive aconitase, shows a dramatic change in the presence of substrate. The remaining iron sites, Feb1,2,3, show minor changes when substrate is bound. Methods devised by us for analyzing and simulating ENDOR spectra of a randomly oriented paramagnet have been used to determine the principal values and orientation relative to the g tensor for the hyperfine tensors of three of the four inequivalent iron sites of the [4Fe-4S]+ cluster, Fea, Feb2, and Feb3, in the substrate-free enzyme and the enzyme–substrate complex. The full tensor for the fourth site, Feb1, could not be obtained because its signal is seen only over a limited range of the EPR envelope. 33S ENDOR data for the enzyme–substrate complex using enzyme reconstituted with 33S show that the four inorganic bridging sulfide ions of the [4Fe-4S]+ cube have isotropic hyperfine couplings of A(S) < 12 MHz, and analysis indicates that they can be divided into two pairs, one with couplings of A(S1) ≲ 1 MHz and the other with A(S2) ~ 6–12 MHz; the analysis further places these pairs within the cube relative to the iron sites. 33S data for substrate-free enzyme is qualitatively similar and can be completely simulated by two types of S2−ion, with A(S1) ~ 7.5 and A(S2) ~ 9 MHz; the full hyperfine tensors have been determined. The hyperfine values for the two enzyme forms correspond to surprisingly small unpaired spin density on S2−. 14N ENDOR at Q-band reveals a nitrogen signal that does not change upon substrate binding.
UR - http://www.scopus.com/inward/record.url?scp=0025202424&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025202424&partnerID=8YFLogxK
U2 - 10.1021/bi00498a016
DO - 10.1021/bi00498a016
M3 - Article
C2 - 2271662
AN - SCOPUS:0025202424
SN - 0006-2960
VL - 29
SP - 10533
EP - 10540
JO - Biochemistry
JF - Biochemistry
IS - 46
ER -