Abstract
The electronic properties of various transparent conducting oxide (TCO) surfaces are probed electrochemically via self-assembled monolayers (SAMs). A novel graftable probe molecule having a tethered trichlorosilyl group and a redox-active ferrocenyl functionality (Fc(CH2)4SiCl 3) is synthesized for this purpose. This molecule can be self-assembled via covalent bonds to form monolayers on various TCO surfaces. On as-received ITO, saturation coverage of 6.6 × 10-10 mol/cm2 by a close-packed monolayer and an electron-transfer rate of 6.65 s-1 is achieved after 9 h of chemisorption, as determined by cyclic voltammetry (CV) and synchrotron X-ray reflectivity. With this molecular probe, it is found that O2 plasma-treated ITO has a significantly greater electroactive coverage of 7.9 × 10-10 mol/cm 2 than as-received ITO. CV studies of this redox SAM on five different TCO surfaces reveal that MOCVD-derived CdO exhibits the greatest electroactive coverage (8.1 × 10-10 mol/cm2) and MOCVD-derived ZITO (ZnIn2.0Sn1.5O) exhibits the highest electron transfer rate (7.12 s-1).
Original language | English (US) |
---|---|
Pages (from-to) | 5755-5765 |
Number of pages | 11 |
Journal | Langmuir |
Volume | 24 |
Issue number | 11 |
DOIs | |
State | Published - Jun 3 2008 |
ASJC Scopus subject areas
- Condensed Matter Physics
- Spectroscopy
- General Materials Science
- Surfaces and Interfaces
- Electrochemistry