TY - JOUR
T1 - Characterization of type I 5α-reductase activity in DU145 human prostatic adenocarcinoma cells
AU - Kaefer, Martin
AU - Audia, James E.
AU - Bruchovsky, Nicholas
AU - Goode, Robin L.
AU - Hsiao, Kenneth C.
AU - Leibovitch, Ilan Y.
AU - Krushinski, Joseph H.
AU - Lee, Chung
AU - Steidle, Christopher P.
AU - Sutkowski, Debra M.
AU - Neubauer, Blake Lee
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1996/5
Y1 - 1996/5
N2 - The conversion of testosterone (T) to dihydrotestosterone (DHT) has been demonstrated to be catalysed by at least two isoforms of human steroid 5α-reductase, designated types I and II. Type II 5α-reductase expression predominates in human accessory sex tissues, localized to the fibromuscular stromal compartment. The type I isoform predominates in skin, prostatic epithelia and, to a lesser extent, in prostatic fibromuscular stroma. The significance of the type I isoform to prostatic cellular growth and function remains undefined. In cultured DU145 cells, we evaluated the metabolism of [14C]-T and demonstrated the time-dependent formation of [14C]-DHT. Oxidative metabolism (conversion of [14C]-T to [14C]-androstenedione) and the formation of conjugated androgen metabolites occurred at a relatively low rate in the DU145 cells. Using human type I 5α-reductase cDNA, Northern blot analysis of DU145 cell mRNA revealed high levels of type I isoform expression. Analogous probing of the DU145 cells with a human 5α-reductase II cDNA failed to reveal expression of the type II isoform. The expression of functional type I activity has been confirmed pharmacologically using isoform-selective 5α-reductase inhibitors. Reductive metabolism of [3H]-T in the DU145 cells was inhibited in a concentration-dependent manner by LY306089, a potent non-steroidal type I-selective inhibitor (IC50 = 10.0 nM). SKF105657, a steroidal type II-specific inhibitor was distinctly less active at inhibiting [3H]-DHT formation. LY306089 was a non-competitive inhibitor of type I 5α-reductase in DU145 cellular homogenates with an apparent K(i) value of 4.0 nM. These studies have identified and pharmacologically defined type I 5α-reductase activity in an androgen-insensitive prostatic cancer cell line and provide the basis for additional investigations into the significance of type I 5α-reductase to human prostatic pathophysiology.
AB - The conversion of testosterone (T) to dihydrotestosterone (DHT) has been demonstrated to be catalysed by at least two isoforms of human steroid 5α-reductase, designated types I and II. Type II 5α-reductase expression predominates in human accessory sex tissues, localized to the fibromuscular stromal compartment. The type I isoform predominates in skin, prostatic epithelia and, to a lesser extent, in prostatic fibromuscular stroma. The significance of the type I isoform to prostatic cellular growth and function remains undefined. In cultured DU145 cells, we evaluated the metabolism of [14C]-T and demonstrated the time-dependent formation of [14C]-DHT. Oxidative metabolism (conversion of [14C]-T to [14C]-androstenedione) and the formation of conjugated androgen metabolites occurred at a relatively low rate in the DU145 cells. Using human type I 5α-reductase cDNA, Northern blot analysis of DU145 cell mRNA revealed high levels of type I isoform expression. Analogous probing of the DU145 cells with a human 5α-reductase II cDNA failed to reveal expression of the type II isoform. The expression of functional type I activity has been confirmed pharmacologically using isoform-selective 5α-reductase inhibitors. Reductive metabolism of [3H]-T in the DU145 cells was inhibited in a concentration-dependent manner by LY306089, a potent non-steroidal type I-selective inhibitor (IC50 = 10.0 nM). SKF105657, a steroidal type II-specific inhibitor was distinctly less active at inhibiting [3H]-DHT formation. LY306089 was a non-competitive inhibitor of type I 5α-reductase in DU145 cellular homogenates with an apparent K(i) value of 4.0 nM. These studies have identified and pharmacologically defined type I 5α-reductase activity in an androgen-insensitive prostatic cancer cell line and provide the basis for additional investigations into the significance of type I 5α-reductase to human prostatic pathophysiology.
UR - http://www.scopus.com/inward/record.url?scp=3042981033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042981033&partnerID=8YFLogxK
U2 - 10.1016/0960-0760(96)00020-9
DO - 10.1016/0960-0760(96)00020-9
M3 - Article
C2 - 8809201
AN - SCOPUS:3042981033
SN - 0960-0760
VL - 58
SP - 195
EP - 205
JO - Journal of Steroid Biochemistry and Molecular Biology
JF - Journal of Steroid Biochemistry and Molecular Biology
IS - 2
ER -