Abstract
This study uses GPS data of 1461 participants at a planned special event organized in Oshkosh, Wisconsin named AirVenture to characterize their spatio-temporal activity participation behavior. The GPS data is used to derive activity sequences for participants and study the attractiveness of various activities at the event site. A validation procedure is proposed using aerial photos, from which crowd density is estimated and compared to heatmaps of GPS data. A machine learning clustering approach is used to group participants into market segments on the basis of their activity sequences. The results show a prevalence of 6 behavioral groups with statistical tests confirming significant differences related to movement and time use. Finally, a multinomial logit model is formulated, demonstrating that age, prior visitation, and attendance plan (daily vs. weekly) affect the typological behavior. The results reveal valuable insights that can help special event organizers with related marketing and planning strategies.
Original language | English (US) |
---|---|
Article number | 104421 |
Journal | Tourism Management |
Volume | 88 |
DOIs | |
State | Published - Feb 2022 |
Keywords
- Activity participation behavior
- Aerial photos
- GPS data
- Market segmentation
- Planned special events
- Sequence clustering
ASJC Scopus subject areas
- Development
- Transportation
- Tourism, Leisure and Hospitality Management
- Strategy and Management