Charge-Disproportionation Symmetry Breaking Creates a Heterodimeric Myoglobin Complex with Enhanced Affinity and Rapid Intracomplex Electron Transfer

Ethan N. Trana, Judith M. Nocek, Jon Vander Woude, Ingrid Span, Stephen M. Smith, Amy C. Rosenzweig, Brian M. Hoffman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We report rapid photoinitiated intracomplex electron transfer (ET) within a "charge-disproportionated" myoglobin (Mb) dimer with greatly enhanced affinity. Two mutually supportive Brownian Dynamics (BD) interface redesign strategies, one a new "heme-filtering" approach, were employed to "break the symmetry" of a Mb homodimer by pairing Mb constructs with complementary highly positive and highly negative net surface charges, introduced through D/E → K and K → E mutations, respectively. BD simulations using a previously developed positive mutant, Mb(+6) = Mb(D44K/D60K/E85K), led to construction of the complementary negative mutant Mb(+6) = Mb(K45E, K63E, K95E). Simulations predict the pair will form a well-defined complex comprising a tight ensemble of conformations with nearly parallel hemes, at a metal-metal distance 18-19 Å. Upon expression and X-ray characterization of the partners, BD predictions were verified through ET photocycle measurements enabled by Zn-deuteroporphyrin substitution, forming the [ZnMb(+6), Fe3+Mb(+6)] complex. Triplet ET quenching shows charge disproportionation increases the binding constant by no less than 5 orders of magnitude relative to wild-type Mb values. All progress curves for charge separation (CS) and charge recombination (CR) are reproduced by a generalized kinetic model for the interprotein ET photocycle. The intracomplex ET rate constants for both CS and CR are increased by over 5 orders of magnitude, and their viscosity independence is indicative of true interprotein ET, rather than dynamic gating as seen in previous studies. The complex displays an unprecedented timecourse for CR of the CS intermediate I. After a laser flash, I forms through photoinduced CS, accumulates to a maximum concentration, then dies away through CR. However, before completely disappearing, I reappears without another flash and reaches a second maximum before disappearing completely.

Original languageEnglish (US)
Pages (from-to)12615-12628
Number of pages14
JournalJournal of the American Chemical Society
Volume138
Issue number38
DOIs
StatePublished - Sep 28 2016

Funding

ASJC Scopus subject areas

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Charge-Disproportionation Symmetry Breaking Creates a Heterodimeric Myoglobin Complex with Enhanced Affinity and Rapid Intracomplex Electron Transfer'. Together they form a unique fingerprint.

Cite this