Chemical embrittlement of Fe grain boundaries: P and the P-Mo couple

L. P. Sagert, G. B. Olson, D. E. Ellis

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


Density functional theory is used in an embedded-cluster scheme to study the electronic effects of P and the P-Mo couple upon the chemical embrittlement of Fe grain boundaries. The results obtained for P alone in a model grain boundary (GB) are consistent with its observed behaviour as a chemical embrittling agent. Total energies calculated for P-Fe clusters indicate a lower free energy for P in a free surface (FS) relative to the GB, in agreement with the Rice-Wang thermodynamic model of intergranular embrittlement. It is found that the chemical interactions between the P and surrounding Fe atoms are similar in both environments but tend to favour the GB configuration. However, it is also found that the structural rearrangement of the GB when P is introduced leads to a sufficiently large reconstruction energy that, overall, the FS configuration is energetically favoured. The results obtained for P-Mo are consistent with the observed behaviour of Mo as a cohesion enhancer; total energies indicate that, when Mo is added to an Fe GB containing P, the embrittlement process is effectively reversed. Although Mo appears to increase somewhat the embrittling potency of P, this is more than compensated by its direct cohesion-enhancing effect at the GB. The underlying physical phenomena responsible for these energy differences are examined in detail using analytical and graphical techniques.

Original languageEnglish (US)
Pages (from-to)871-889
Number of pages19
JournalPhilosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties
Issue number3
StatePublished - Mar 1998

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Chemical embrittlement of Fe grain boundaries: P and the P-Mo couple'. Together they form a unique fingerprint.

Cite this