TY - JOUR
T1 - Chemoprevention of colon carcinogenesis by polyethylene glycol
T2 - Suppression of epithelial proliferation via modulation of SNAIL/β-catenin signaling
AU - Roy, Hemant K.
AU - Kunte, Dhananjay P.
AU - Koetsier, Jennifer L.
AU - Hart, John
AU - Kim, Young L.
AU - Liu, Yang
AU - Bissonnette, Marc
AU - Goldberg, Michael
AU - Backman, Vadim
AU - Wali, Ramesh K.
PY - 2006/8
Y1 - 2006/8
N2 - Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1 - β-catenin - mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because β-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited β-catenin transcriptional activity. PEG did not alter total β-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of β-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect.
AB - Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1 - β-catenin - mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because β-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited β-catenin transcriptional activity. PEG did not alter total β-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of β-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect.
UR - http://www.scopus.com/inward/record.url?scp=33748360332&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748360332&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-06-0054
DO - 10.1158/1535-7163.MCT-06-0054
M3 - Article
C2 - 16928827
AN - SCOPUS:33748360332
SN - 1535-7163
VL - 5
SP - 2060
EP - 2069
JO - Molecular cancer therapeutics
JF - Molecular cancer therapeutics
IS - 8
ER -