Chern character for twisted complexes

Paul Bressler, Alexander Gorokhovsky, Ryszard Nest, Boris L Tsygan

Research output: Chapter in Book/Report/Conference proceedingChapter

6 Scopus citations

Abstract

We construct the Chern character from the K-theory of twisted perfect complexes of an algebroid stack to the negative cyclic homology of the algebra of twisted matrices associated to the stack.

Original languageEnglish (US)
Title of host publicationProgress in Mathematics
PublisherSpringer Basel
Pages309-324
Number of pages16
DOIs
StatePublished - Jan 1 2008

Publication series

NameProgress in Mathematics
Volume265
ISSN (Print)0743-1643
ISSN (Electronic)2296-505X

Keywords

  • Chern character
  • K-theory
  • cyclic homology
  • stack

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology

Fingerprint Dive into the research topics of 'Chern character for twisted complexes'. Together they form a unique fingerprint.

  • Cite this

    Bressler, P., Gorokhovsky, A., Nest, R., & Tsygan, B. L. (2008). Chern character for twisted complexes. In Progress in Mathematics (pp. 309-324). (Progress in Mathematics; Vol. 265). Springer Basel. https://doi.org/10.1007/978-3-7643-8608-5_5