### Abstract

We construct the Chern character from the K-theory of twisted perfect complexes of an algebroid stack to the negative cyclic homology of the algebra of twisted matrices associated to the stack.

Original language | English (US) |
---|---|

Title of host publication | Progress in Mathematics |

Publisher | Springer Basel |

Pages | 309-324 |

Number of pages | 16 |

DOIs | |

State | Published - Jan 1 2008 |

### Publication series

Name | Progress in Mathematics |
---|---|

Volume | 265 |

ISSN (Print) | 0743-1643 |

ISSN (Electronic) | 2296-505X |

### Fingerprint

### Keywords

- Chern character
- K-theory
- cyclic homology
- stack

### ASJC Scopus subject areas

- Analysis
- Algebra and Number Theory
- Geometry and Topology

### Cite this

*Progress in Mathematics*(pp. 309-324). (Progress in Mathematics; Vol. 265). Springer Basel. https://doi.org/10.1007/978-3-7643-8608-5_5

}

*Progress in Mathematics.*Progress in Mathematics, vol. 265, Springer Basel, pp. 309-324. https://doi.org/10.1007/978-3-7643-8608-5_5

**Chern character for twisted complexes.** / Bressler, Paul; Gorokhovsky, Alexander; Nest, Ryszard; Tsygan, Boris L.

Research output: Chapter in Book/Report/Conference proceeding › Chapter

TY - CHAP

T1 - Chern character for twisted complexes

AU - Bressler, Paul

AU - Gorokhovsky, Alexander

AU - Nest, Ryszard

AU - Tsygan, Boris L

PY - 2008/1/1

Y1 - 2008/1/1

N2 - We construct the Chern character from the K-theory of twisted perfect complexes of an algebroid stack to the negative cyclic homology of the algebra of twisted matrices associated to the stack.

AB - We construct the Chern character from the K-theory of twisted perfect complexes of an algebroid stack to the negative cyclic homology of the algebra of twisted matrices associated to the stack.

KW - Chern character

KW - K-theory

KW - cyclic homology

KW - stack

UR - http://www.scopus.com/inward/record.url?scp=85028347876&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85028347876&partnerID=8YFLogxK

U2 - 10.1007/978-3-7643-8608-5_5

DO - 10.1007/978-3-7643-8608-5_5

M3 - Chapter

AN - SCOPUS:85028347876

T3 - Progress in Mathematics

SP - 309

EP - 324

BT - Progress in Mathematics

PB - Springer Basel

ER -