TY - JOUR
T1 - Choice of standard fracture test for concrete and its statistical evaluation
AU - Bažant, Zdeněk P.
AU - Yu, Qiang
AU - Zi, Goangseup
N1 - Funding Information:
This study was funded under Grant 0740-350-A447 from the Infrastructure Technology Institute of Northwestern University funded by U.S. Department of Transportation. The background research was partly funded under Grant CMS-0732791 from the U.S. National Science Foundation to Northwestern University.
PY - 2002/12
Y1 - 2002/12
N2 - The main characteristics of the cohesive (or fictitious) crack model, which is now generally accepted as the best simple fracture model for concrete, are (aside from tensile strength) the fracture energies G F and G f corresponding to the areas under the complete softening stress-separation curve and under the initial tangent of this curve. Although these are two independent fracture characteristics which both should be measured, the basic (level I) standard test is supposed to measure only one. First, it is argued that the level I test should measure G f, for statistical reasons and because of relevance to prediction of maximum loads of structures. Second, various methods for measuring G f (or the corresponding fracture toughness), including the size effect method, the Jenq-Shah method (TPFM), and the Guinea et al. method, are discussed. The last is clearly the most robust and optimal because: (1) it is based on the exact solution of the bilinear cohesive crack model and (2) necessitates nothing more than measurement of the maximum loads of notched specimens of one size, supplemented by tensile strength measurements. Since the identification of material fracture parameters from test data involves two random variables, f′t (tensile strength) and G f, statistical regression should be applied. But regression is not feasible in the original Guinea et al.'s method. The present study proposes an improved version of Guinea et al.'s method which reduces the statistical problem to linear regression thanks to exploiting the systematic trend of size effect. This is made possible by noting that, according to the cohesive (or fictitious) crack model, the zero-size limit σNO of nominal strength σN of a notched specimen is independent of F f and thus can be easily calculated from the measured f′t. Then, the values of σNO obtained from the measured f′t values, together with the measured σN-values of notched specimens, are used in statistical regression based on the exact size effect curve calculated in advance from the cohesive crack model for the chosen specimen geometry. This has several advantages: (1) the linear regression is the most robust statistical approach; (2) the difficult question of statistical correlation between measured f′t and the nominal strength of notched specimens is bypassed, by virtue of knowing the size effect trend; (3) the resulting coefficient of variation of mean G f is very different and much more realistic than in the original version; (4) the coefficient of variation of the deviations of individual data from the regression line is very different from the coefficient of variation of individual notched test data and represents a much more realistic measure of scatter; and (5) possible accuracy improvements through the testing of notched specimens with different notch lengths and the same size, or notched specimens of different sizes, are in the regression setting straightforward. For engineering purposes where high accuracy is not needed, the simplest approach is the previously proposed zero-brittleness method, which can be regarded as a simplification of Guinea et al.' method. Finally, the errors of TPFM due to random variability of unloading-reloading properties from one concrete to another are quantitatively estimated.
AB - The main characteristics of the cohesive (or fictitious) crack model, which is now generally accepted as the best simple fracture model for concrete, are (aside from tensile strength) the fracture energies G F and G f corresponding to the areas under the complete softening stress-separation curve and under the initial tangent of this curve. Although these are two independent fracture characteristics which both should be measured, the basic (level I) standard test is supposed to measure only one. First, it is argued that the level I test should measure G f, for statistical reasons and because of relevance to prediction of maximum loads of structures. Second, various methods for measuring G f (or the corresponding fracture toughness), including the size effect method, the Jenq-Shah method (TPFM), and the Guinea et al. method, are discussed. The last is clearly the most robust and optimal because: (1) it is based on the exact solution of the bilinear cohesive crack model and (2) necessitates nothing more than measurement of the maximum loads of notched specimens of one size, supplemented by tensile strength measurements. Since the identification of material fracture parameters from test data involves two random variables, f′t (tensile strength) and G f, statistical regression should be applied. But regression is not feasible in the original Guinea et al.'s method. The present study proposes an improved version of Guinea et al.'s method which reduces the statistical problem to linear regression thanks to exploiting the systematic trend of size effect. This is made possible by noting that, according to the cohesive (or fictitious) crack model, the zero-size limit σNO of nominal strength σN of a notched specimen is independent of F f and thus can be easily calculated from the measured f′t. Then, the values of σNO obtained from the measured f′t values, together with the measured σN-values of notched specimens, are used in statistical regression based on the exact size effect curve calculated in advance from the cohesive crack model for the chosen specimen geometry. This has several advantages: (1) the linear regression is the most robust statistical approach; (2) the difficult question of statistical correlation between measured f′t and the nominal strength of notched specimens is bypassed, by virtue of knowing the size effect trend; (3) the resulting coefficient of variation of mean G f is very different and much more realistic than in the original version; (4) the coefficient of variation of the deviations of individual data from the regression line is very different from the coefficient of variation of individual notched test data and represents a much more realistic measure of scatter; and (5) possible accuracy improvements through the testing of notched specimens with different notch lengths and the same size, or notched specimens of different sizes, are in the regression setting straightforward. For engineering purposes where high accuracy is not needed, the simplest approach is the previously proposed zero-brittleness method, which can be regarded as a simplification of Guinea et al.' method. Finally, the errors of TPFM due to random variability of unloading-reloading properties from one concrete to another are quantitatively estimated.
KW - Cohesive crack model
KW - Concrete
KW - Standard fracture test
UR - http://www.scopus.com/inward/record.url?scp=17744403231&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17744403231&partnerID=8YFLogxK
U2 - 10.1023/A:1023399125413
DO - 10.1023/A:1023399125413
M3 - Article
AN - SCOPUS:17744403231
SN - 0376-9429
VL - 118
SP - 303
EP - 337
JO - International Journal of Fracture
JF - International Journal of Fracture
IS - 4
ER -