TY - JOUR
T1 - Class 1 histone deacetylases differentially modulate memory and synaptic genes in a spatial and temporal manner in aged and APP/PS1 mice
AU - McClarty, Bryan M.
AU - Rodriguez, Guadalupe
AU - Dong, Hongxin
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/8/15
Y1 - 2024/8/15
N2 - Epigenetics plays a vital role in aging and Alzheimer's disease (AD); however, whether epigenetic alterations during aging can initiate AD and exacerbate AD progression remains unclear. In this study, using 3-, 12- and 18- month-old APP/PS1 mice and age matched WT littermates, we conducted a series of memory tests, measured synapse-related gene expression, class 1 histone deacetylases (HDACs) abundance, and H3K9ac levels at target gene promoters in the hippocampus and prefrontal cortex (PFC). Our results showed impaired recognition and long-term spatial memory in 18-month-old WT mice and impaired recognition, short-term working, and long-term spatial reference memory in 12-and 18- month-old APP/PS1 mice. These memory impairments are associated with changes of synapse-related gene (nr2a, glur1, glur2, psd95) expression, HDAC abundance, and H3K9ac levels; more specifically, increased HDAC2 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during aging and AD progression in the hippocampus. Conversely, increased HDAC3 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during AD progression in the PFC. These findings suggest memory impairments in aging and AD may associated with a differential HDAC modulation of synapse-related gene expression in the brain.
AB - Epigenetics plays a vital role in aging and Alzheimer's disease (AD); however, whether epigenetic alterations during aging can initiate AD and exacerbate AD progression remains unclear. In this study, using 3-, 12- and 18- month-old APP/PS1 mice and age matched WT littermates, we conducted a series of memory tests, measured synapse-related gene expression, class 1 histone deacetylases (HDACs) abundance, and H3K9ac levels at target gene promoters in the hippocampus and prefrontal cortex (PFC). Our results showed impaired recognition and long-term spatial memory in 18-month-old WT mice and impaired recognition, short-term working, and long-term spatial reference memory in 12-and 18- month-old APP/PS1 mice. These memory impairments are associated with changes of synapse-related gene (nr2a, glur1, glur2, psd95) expression, HDAC abundance, and H3K9ac levels; more specifically, increased HDAC2 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during aging and AD progression in the hippocampus. Conversely, increased HDAC3 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during AD progression in the PFC. These findings suggest memory impairments in aging and AD may associated with a differential HDAC modulation of synapse-related gene expression in the brain.
KW - Aging
KW - Alzheimer's Disease
KW - Epigenetics
KW - Histone acetylation
KW - Memory
UR - http://www.scopus.com/inward/record.url?scp=85191979351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85191979351&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2024.148951
DO - 10.1016/j.brainres.2024.148951
M3 - Article
C2 - 38642789
AN - SCOPUS:85191979351
SN - 0006-8993
VL - 1837
JO - Brain research
JF - Brain research
M1 - 148951
ER -