Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily, is expressed predominantly in adipose tissue. Forced expression of the two isoforms of this receptor, PPARgamma1 and PPARgamma2, in fibroblasts initiates a transcriptional cascade that leads to the development of adipocyte phenotype. Using the yeast two-hybrid system and GAL4-PPARgamma as bait to screen mouse liver cDNA library, we isolated a mouse steroid receptor coactivator (mSRC-1) involved in nuclear hormone receptor transcriptional activity as a mPPARgamma interactive protein. mSRC-1 cDNA we isolated contains an open reading frame of 1447 amino acids and encodes a new member of the basic helix-loop-helix-PAS domain family. We show that the binding of mSRC-1 to mPPARgamma is ligand independent and coexpression of mSRC-1 with mPPARgamma increases the transcriptional activity of mPPARgamma in the presence of mPPARgamma ligand. We have identified the presence of two putative mPPARgamma binding sites in the mSRC-1, one between residues 620 and 789, and the second between residues 1231 and 1447. These two regions exhibit different degrees of binding affinity for mPPARgamma. We also show that mSRC-1 exhibits its own constitutive transcriptional activity in the yeast as well as in mammalian cells. These results suggest that mSRC-1 interacts with PPARgamma and plays a role in the PPARgamma-mediated signaling pathway.
Original language | English (US) |
---|---|
Pages (from-to) | 185-195 |
Number of pages | 11 |
Journal | Gene expression |
Volume | 6 |
Issue number | 3 |
State | Published - 1996 |
ASJC Scopus subject areas
- Molecular Biology
- Genetics