Abstract
PCAF and hGCN5 are distinct human genes that encode proteins related to the yeast histone acetyltransferase and transcriptional adapter GCN5. The PCAF protein shares extensive similarity with the 439 amino acids of yGCN5, but it has an ~ 350 amino acid N-terminal extension that interacts with the transcriptional co-activator p300/CBP. Adenoviral protein E1a can disrupt PCAF-CBP interactions and prevent PCAF-dependent cellular differentiation. In this report, we describe the cloning and initial characterization of a Drosophila homolog of yGCN5. In addition to the homology to yGCN5, the Drosophila protein shares sequence similarity with the N-terminal portion of human PCAF that is involved in binding to CBP. In the course of characterizing dGCN5, we have discovered that hGCN5 also contains an N-terminal extension with significant similarity to PCAF. Interestingly, in the case of the hGCN5 gene, alternative splicing may regulate the production of full-length hGCN5. The presence of the N-terminal domain in a Drosophila GCN5 homolog and both human homologs suggests that it was part of the ancestral form of metazoan GCN5.
Original language | English (US) |
---|---|
Pages (from-to) | 2948-2954 |
Number of pages | 7 |
Journal | Nucleic acids research |
Volume | 26 |
Issue number | 12 |
DOIs | |
State | Published - Jun 15 1998 |
ASJC Scopus subject areas
- Genetics