TY - JOUR
T1 - Clustering semi-random mixtures of Gaussians
AU - Awasthi, Pranjal
AU - Vijayaraghavan, Aravindan
N1 - Publisher Copyright:
Copyright © 2017, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017/11/23
Y1 - 2017/11/23
N2 - Gaussian mixture models (GMM) are the most widely used statistical model for the k-means clustering problem and form a popular framework for clustering in machine learning and data analysis. In this paper, we propose a natural semi-random model for k-means clustering that generalizes the Gaussian mixture model, and that we believe will be useful in identifying robust algorithms. In our model, a semi-random adversary is allowed to make arbitrary “monotone” or helpful changes to the data generated from the Gaussian mixture model. Our first contribution is a polynomial time algorithm that provably recovers the ground-truth up to small classification error w.h.p., assuming certain separation between the components. Perhaps surprisingly, the algorithm we analyze is the popular Lloyd's algorithm for k-means clustering that is the method-of-choice in practice. Our second result complements the upper bound by giving a nearly matching information-theoretic lower bound on the number of misclassified points incurred by any k-means clustering algorithm on the semi-random model.
AB - Gaussian mixture models (GMM) are the most widely used statistical model for the k-means clustering problem and form a popular framework for clustering in machine learning and data analysis. In this paper, we propose a natural semi-random model for k-means clustering that generalizes the Gaussian mixture model, and that we believe will be useful in identifying robust algorithms. In our model, a semi-random adversary is allowed to make arbitrary “monotone” or helpful changes to the data generated from the Gaussian mixture model. Our first contribution is a polynomial time algorithm that provably recovers the ground-truth up to small classification error w.h.p., assuming certain separation between the components. Perhaps surprisingly, the algorithm we analyze is the popular Lloyd's algorithm for k-means clustering that is the method-of-choice in practice. Our second result complements the upper bound by giving a nearly matching information-theoretic lower bound on the number of misclassified points incurred by any k-means clustering algorithm on the semi-random model.
UR - http://www.scopus.com/inward/record.url?scp=85092813678&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092813678&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85092813678
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
SN - 0891-5849
ER -