Abstract
Pathogenic bacteria and their microbial products activate dendritic cells (DCs) at mucosal surfaces during sexually transmitted infections (STIs) and therefore might also differently shape DC functions during coinfection with HIV-1. We recently illustrated that complement (C) coating of HIV-1 (HIV-C), as primarily found during the acute phase of infection before appearance of HIV-specific antibodies, by-passed SAMHD1-mediated restriction in DCs and therefore mediated an increased DC activation and antiviral capacity. To determine whether the superior antiviral effects of HIV-C-exposed DCs also apply during STIs, we developed a co-infection model in which DCs were infected with Chlamydia spp. simultaneously (HIV-C/Chlam-DCs or HIV/Chlam-DCs) or a sequential infection model, where DCs were exposed to Chlamydia for 3 or 24 h (Chlam-DCs) followed by HIV-1 infection. Co-infection of DCs with HIV-1 and Chlamydia significantly boosted the CTL-stimulatory capacity compared to HIV-1-loaded iDCs and this boost was independent on the opsonization pattern. This effect was lost in the sequential infection model, when opsonized HIV-1 was added delayed to Chlamydia-loaded DCs. The reduction in the CTL-stimulatory capacity of Chlam-DCs was not due to lower HIV-1 binding or infection compared to iDCs or HIV-C/Chlam-DCs, but due to altered fusion and internalization mechanisms within DCs. The CTL-stimulatory capacity of HIV-C in Chlam-DCs correlated with significantly reduced viral fusion compared to iDCs and HIV-C/Chlam-DCs and illustrated considerably increased numbers of HIV-C-containing vacuoles than iDCs. The data indicate that Chlamydia coinfection of DCs mediates a transient boost of their HIV-specific CTL-stimulatory and antiviral capacity, while in the sequential infection model this is reversed and associated with hazard to the host.
Original language | English (US) |
---|---|
Article number | 1123 |
Journal | Frontiers in immunology |
Volume | 10 |
Issue number | MAY |
DOIs | |
State | Published - 2019 |
Funding
We would like to thank our technician Karolin Thurnes, Divison of Hygiene and Medical Microbiology, and Prof. Oliver Keppler, Max-von-Pettenkofer Institute, Munich, Germany, for supplying the HIV plasmids. We would like to thank the Austrian Science Fund (MCBO graduate program/W011010-21 and P24598 to DW, P25389 to WP) and the Oesterreichische Nationalbank Anniversary Fund (Project number: 17614 to WP) for supporting this work. Further, this publication was made possible with help from the HIV Vaccine Trials Network Mucosal Immunology Group Program, an NIH funded program (HVTN LC Grant UM1AI068618 to TJH and DW) and the Tyrolean Science Fund (to DW). AM is supported by ANRS, Sidaction and ANR fundings.
Keywords
- CTL
- Complement
- Dendritic cell
- HIV-1
- STIs
ASJC Scopus subject areas
- Immunology and Allergy
- Immunology