Coarse-grained modelling of DNA plectoneme pinning in the presence of base-pair mismatches

Parth Rakesh Desai, Sumitabha Brahmachari, John F. Marko, Siddhartha Das, Keir C. Neuman

Research output: Contribution to journalArticlepeer-review

Abstract

Damaged or mismatched DNA bases result in the formation of physical defects in double-stranded DNA. In vivo, defects in DNA must be rapidly and efficiently repaired to maintain cellular function and integrity. Defects can also alter the mechanical response of DNA to bending and twisting constraints, both of which are important in defining the mechanics of DNA supercoiling. Here, we use coarse-grained molecular dynamics (MD) simulation and supporting statistical-mechanical theory to study the effect of mismatched base pairs on DNA supercoiling. Our simulations show that plectoneme pinning at the mismatch site is deterministic under conditions of relatively high force (>2 pN) and high salt concentration (>0.5 M NaCl). Under physiologically relevant conditions of lower force (0.3 pN) and lower salt concentration (0.2 M NaCl), we find that plectoneme pinning becomes probabilistic and the pinning probability increases with the mismatch size. These findings are in line with experimental observations. The simulation framework, validated with experimental results and supported by the theoretical predictions, provides a way to study the effect of defects on DNA supercoiling and the dynamics of supercoiling in molecular detail.

Original languageEnglish (US)
Pages (from-to)10713-10725
Number of pages13
JournalNucleic acids research
Volume48
Issue number19
DOIs
StatePublished - Nov 4 2020

ASJC Scopus subject areas

  • Genetics

Fingerprint Dive into the research topics of 'Coarse-grained modelling of DNA plectoneme pinning in the presence of base-pair mismatches'. Together they form a unique fingerprint.

Cite this