Colloidal quantum dot lasers

Young Shin Park, Jeongkyun Roh, Benjamin T. Diroll, Richard D. Schaller, Victor I. Klimov*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

88 Scopus citations

Abstract

Semiconductor nanocrystals represent a promising class of solution-processable optical-gain media that can be manipulated via inexpensive, easily scalable colloidal techniques. Due to their extremely small sizes (typically <10 nm), their properties can be directly controlled via effects of quantum confinement; therefore, they are often termed colloidal quantum dots (CQDs). In addition to size-tunable emission wavelengths, CQDs offer other benefits for lasing applications, including low optical-gain thresholds and high temperature stability of lasing characteristics. Recent progress in understanding and practical control of processes impeding light amplification in CQDs has resulted in several breakthroughs, including the demonstration of optically pumped continuous-wave lasing, the realization of optical gain with direct current electrical injection and the development of dual-function electroluminescent devices that also operate as optically pumped lasers. The purpose of this Review is to assess the status of the field of CQD lasing and discuss the existing challenges and opportunities. A particular focus is on approaches for suppressing nonradiative Auger recombination, novel optical-gain concepts enabled by strong exciton–exciton interactions and controlled CQD charging, effects of nanocrystal form factors on light amplification and practical architectures for realizing electrically pumped CQD lasers. This overview suggests that the accumulated knowledge, along with the approaches developed for manipulating the optical-gain properties of colloidal nanostructures, perfectly position the CQD field for successfully addressing a long-standing challenge: the realization of CQD-based laser diodes.

Original languageEnglish (US)
Pages (from-to)382-401
Number of pages20
JournalNature Reviews Materials
Volume6
Issue number5
DOIs
StatePublished - May 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Energy (miscellaneous)
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Colloidal quantum dot lasers'. Together they form a unique fingerprint.

Cite this