Color-stable highly luminescent sky-blue perovskite light-emitting diodes

Jun Xing, Yongbiao Zhao, Mikhail Askerka, Li Na Quan, Xiwen Gong, Weijie Zhao, Jiaxin Zhao, Hairen Tan, Guankui Long, Liang Gao, Zhenyu Yang, Oleksandr Voznyy, Jiang Tang, Zheng Hong Lu, Qihua Xiong*, Edward H. Sargent

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

412 Scopus citations


Perovskite light-emitting diodes (PeLEDs) have shown excellent performance in the green and near-infrared spectral regions, with high color purity, efficiency, and brightness. In order to shift the emission wavelength to the blue, compositional engineering (anion mixing) and quantum-confinement engineering (reduced-dimensionality) have been employed. Unfortunately, LED emission profiles shift with increasing driving voltages due to either phase separation or the coexistence of multiple crystal domains. Here we report color-stable sky-blue PeLEDs achieved by enhancing the phase monodispersity of quasi-2D perovskite thin films. We selected cation combinations that modulate the crystallization and layer thickness distribution of the domains. The perovskite films show a record photoluminescence quantum yield of 88% at 477 nm. The corresponding PeLEDs exhibit stable sky-blue emission under high operation voltages. A maximum luminance of 2480 cd m−2 at 490 nm is achieved, fully one order of magnitude higher than the previous record for quasi-2D blue PeLEDs.

Original languageEnglish (US)
Article number3541
JournalNature communications
Issue number1
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Color-stable highly luminescent sky-blue perovskite light-emitting diodes'. Together they form a unique fingerprint.

Cite this