Combining microfluidic networks and peptide arrays for multi-enzyme assays

Jing Su, Michelle R. Bringer, Rustem F. Ismagilov*, Milan Mrksich

*Corresponding author for this work

Research output: Contribution to journalArticle

68 Scopus citations


This paper reports the use of microfluidic networks (μFNs) to both prepare peptide microarrays and carry out label-free enzyme assays on self-assembled monolayers (SAMs) of alkanethiolates on gold. A poly(dimethylsiloxane) (PDMS) stamp fabricated with microchannels is used to immobilize a linear array of cysteine-terminated peptides onto SAMs presenting maleimide groups. The stamp is then reapplied to the SAM in a perpendicular direction to introduce enzyme solutions so that each solution can interact with an identical linear array of immobilized peptides. The μFNs enable multiple enzyme-substrate interactions to be simultaneously evaluated at a submicroliter scale, while the use of SAMs enables the use of MALDI mass spectrometry (MS) to analyze the enzyme activities. This paper demonstrates applications of this system for assaying multiple kinases and for profiling the activities of kinases and phosphatases in human K562 cell extracts. The combination of μFN, SAMs, and MS detection provides a flexible platform for assaying enzyme activities in biological samples.

Original languageEnglish (US)
Pages (from-to)7280-7281
Number of pages2
JournalJournal of the American Chemical Society
Issue number20
StatePublished - May 25 2005

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Combining microfluidic networks and peptide arrays for multi-enzyme assays'. Together they form a unique fingerprint.

  • Cite this