Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms

Matthew Dapas, Manoj Kandpal, Yingtao Bi, Ramana V Davuluri*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Given that the majority of multi-exon genes generate diverse functional products, it is important to evaluate expression at the isoformlevel. Previous studies have demonstrated strong gene-level correlations between RNA sequencing (RNA-seq) andmicroarray platforms, but have not studied their concordance at the isoform level. We performed transcript abundance estimation on raw RNA-seq and exon-array expression profiles available for common glioblastoma multiforme samples fromThe Cancer Genome Atlas using different analysis pipelines, and compared both the isoform- and gene-level expression estimates between programs and platforms. The results showed better concordance between RNA-seq/exon-array and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) platforms for fold change estimates than for raw abundance estimates, suggesting that fold change normalization against a control is an important step for integrating expression data across platforms. Based on RT-qPCR validations, eXpress and Multi-Mapping Bayesian Gene eXpression (MMBGX) programs achieved the best performance for RNA-seq and exon-array platforms, respectively, for deriving the isoform-level fold change values. While eXpress achieved the highest correlation with the RT-qPCR and exon-array (MMBGX) results overall, RSEM wasmore highly correlated with MMBGX for the subset of transcripts that are highly variable across the samples. Express appears to be most successful in discriminating lowly expressed transcripts, but IsoformEx and RSEM correlate more strongly with MMBGX for highly expressed transcripts. The results also reinforce how potentially important isoform-level expression changes can bemasked by gene-level estimates, and demonstrate that exon arrays yield comparable results to RNA-seq for evaluating isoform-level expression changes.

Original languageEnglish (US)
Pages (from-to)260-269
Number of pages10
JournalBriefings in Bioinformatics
Issue number2
StatePublished - 2017


  • Alternative splicing
  • Cross-platform integration
  • Exon-array
  • Gene expression
  • Isoform-level expression
  • RNA-seq

ASJC Scopus subject areas

  • Information Systems
  • Molecular Biology


Dive into the research topics of 'Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms'. Together they form a unique fingerprint.

Cite this