TY - GEN
T1 - Comparison of three-dimensional shape memory alloy constitutive models
T2 - ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2013
AU - Zhu, Pingping
AU - Brinson, L. Catherine
AU - Peraza-Hernandez, Edwin
AU - Hartl, Darren
AU - Stebner, Aaron
PY - 2013
Y1 - 2013
N2 - Many three-dimensional constitutive models have been proposed to enhance the analysis and design of shape memory alloy (SMA) structural components. Phenomenological models are desirable for this purpose since they describe macroscopic responses using internal variables to govern the homogenized material response. Because they are computationally efficient on the scale of millimeters to meters, these models are often the only viable option when assessing the response of full-scale SMA components for engineering applications. Thus, many different 3D SMA constitutive models have been developed. However, for their intended user, the application engineer, a clear and straightforward methodology has not been established for selecting a model to use in a design process. A primary goal of the Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART) modeling working group has been establishment of model selection methodology. One critical step in this process is the development of benchmark problems that clearly illustrate the capabilities and efficiencies of models. In this paper, we propose a set of benchmark problems centered on an SMA tube component. These problems have been selected to demonstrate both uniaxial and multiaxial, actuation and superelastic capabilities of 3D SMA models. We then use finite element simulations of these benchmark problems to compare and contrast both the material modeling and implementation of three unique SMA constitutive models.
AB - Many three-dimensional constitutive models have been proposed to enhance the analysis and design of shape memory alloy (SMA) structural components. Phenomenological models are desirable for this purpose since they describe macroscopic responses using internal variables to govern the homogenized material response. Because they are computationally efficient on the scale of millimeters to meters, these models are often the only viable option when assessing the response of full-scale SMA components for engineering applications. Thus, many different 3D SMA constitutive models have been developed. However, for their intended user, the application engineer, a clear and straightforward methodology has not been established for selecting a model to use in a design process. A primary goal of the Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART) modeling working group has been establishment of model selection methodology. One critical step in this process is the development of benchmark problems that clearly illustrate the capabilities and efficiencies of models. In this paper, we propose a set of benchmark problems centered on an SMA tube component. These problems have been selected to demonstrate both uniaxial and multiaxial, actuation and superelastic capabilities of 3D SMA models. We then use finite element simulations of these benchmark problems to compare and contrast both the material modeling and implementation of three unique SMA constitutive models.
UR - http://www.scopus.com/inward/record.url?scp=84896360132&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896360132&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2013-3093
DO - 10.1115/SMASIS2013-3093
M3 - Conference contribution
AN - SCOPUS:84896360132
SN - 9780791856048
T3 - ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2013
BT - Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
PB - American Society of Mechanical Engineers
Y2 - 16 September 2013 through 18 September 2013
ER -