Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice

Song Cao, Daniel W. Fisher, Guadalupe Rodriguez, Tian Yu, Hongxin Dong*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: The role of microglia in Alzheimer’s disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. Methods: In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. Results: Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. Conclusion: These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.

Original languageEnglish (US)
Article number10
JournalJournal of neuroinflammation
Volume18
Issue number1
DOIs
StatePublished - Dec 2021

Keywords

  • Alzheimer’s disease
  • Dopaminergic
  • Locus coeruleus
  • Microglia
  • Noradrenergic
  • Norepinephrine transporter
  • Norepinephrine/noradrenaline
  • Spinal cord

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice'. Together they form a unique fingerprint.

Cite this