Compartmentalization and delivery via asymmetric copolymer monolayers with swollen or inverse swollen micelles

Hong Xia Guo, Monica Olvera De La Cruz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


We investigate the equilibrium properties and the underlying dynamics of emulsions formed in asymmetric A-B copolymers in matrices of immiscible B and C molecular fluids using coarse-grained molecular dynamics simulations. The emulsions are generated by introducing net attractions among the A units of the copolymers and the C molecules. They coexist with an absorbed copolymer monolayer. We determine the interfacial properties as the emulsions are forming. In general, highly asymmetric copolymers self-assemble within the B-matrix phase into swollen micelles; the cores of which are composed of C-component material. Less asymmetric copolymers, however, after initially budding and eventually fissioning from the interfacial copolymer monolayer, generate emulsified "inverse swollen micelles" within the C-matrix phase. These stable inverse (crew-cut) swollen micelles, which form under the inward bending of the saturated or oversaturated interfaces toward the longer B-block due to the attraction between the A and C units, can encapsulate large amounts of B-matrix component in their cores. This monolayer collapse mechanism can be exploited to generate nanoreactors or containers that enhance the delivery of molecular components into immiscible molecular fluid environments.

Original languageEnglish (US)
Article number094902
JournalJournal of Chemical Physics
Issue number9
StatePublished - 2010

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Compartmentalization and delivery via asymmetric copolymer monolayers with swollen or inverse swollen micelles'. Together they form a unique fingerprint.

Cite this