TY - JOUR
T1 - Competitive electron transfer and enhanced intersystem crossing in photoexcited covalent TEMPO-Perylene-3,4:9,10-bis(dicarboximide) dyads
T2 - unusual spin polarization resulting from the radical-triplet interaction
AU - Colvin, Michael T.
AU - Giacobbe, Emilie M.
AU - Cohen, Boiko
AU - Miura, Tomoaki
AU - Scott, Amy M.
AU - Wasielewski, Michael R.
PY - 2010/3/1
Y1 - 2010/3/1
N2 - A stable 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was covalently attached at its 4-position to the imide nitrogen atom of a perylene-3,4:9,10-bis(dicarboximide) (PDI) to produce TEMPO-PDI, 1, having a well-defined distance and orientation between TEMPO and PDI. Transient optical absorption experiments in toluene following selective photoexcitation of the PDI chromophore in TEMPO-PDI show that enhanced intersystem crossing occurs with τ = 45 ± 1 ps, resulting in formation of TEMPO-3* PDI, while the same experiment in THF shows that the electron-transfer reaction TEMPO-1*PDI → TEMPO+̇-PDI-̇ occurs with τ = 1.2 ± 0.2 ps and thus competes effectively with enhanced intersystem crossing. Time-resolved EPR (TREPR) spectroscopy on the photogenerated three-spin system TEMPO-3*PDI in toluene at 295 K initially shows a broad signal assigned to spin-polarized 3* PDI, which thermalizes at longer times and is accompanied by formation of an emissively polarized TEMPO radical. No signals are observed in THF at 295 K. The TREPR spectrum of TEMPO-3*PDI at 85 K in toluene shows an emissive/absorptive signal due to TEMPO and a broad triplet signal due to 3*PDI having a spin polarization pattern characteristic of overpopulation of its T0 sublevel. This unusual spin polarization pattern does not result from radical pair intersystem crossing because electron transfer does not occur at 85 K. The observed spin polarization of 3*PDI cannot be readily explained by mechanisms discussed previously, leading us to propose a new spin polarization mechanism, which requires that the radical and attached triplet are in the weak exchange regime.
AB - A stable 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was covalently attached at its 4-position to the imide nitrogen atom of a perylene-3,4:9,10-bis(dicarboximide) (PDI) to produce TEMPO-PDI, 1, having a well-defined distance and orientation between TEMPO and PDI. Transient optical absorption experiments in toluene following selective photoexcitation of the PDI chromophore in TEMPO-PDI show that enhanced intersystem crossing occurs with τ = 45 ± 1 ps, resulting in formation of TEMPO-3* PDI, while the same experiment in THF shows that the electron-transfer reaction TEMPO-1*PDI → TEMPO+̇-PDI-̇ occurs with τ = 1.2 ± 0.2 ps and thus competes effectively with enhanced intersystem crossing. Time-resolved EPR (TREPR) spectroscopy on the photogenerated three-spin system TEMPO-3*PDI in toluene at 295 K initially shows a broad signal assigned to spin-polarized 3* PDI, which thermalizes at longer times and is accompanied by formation of an emissively polarized TEMPO radical. No signals are observed in THF at 295 K. The TREPR spectrum of TEMPO-3*PDI at 85 K in toluene shows an emissive/absorptive signal due to TEMPO and a broad triplet signal due to 3*PDI having a spin polarization pattern characteristic of overpopulation of its T0 sublevel. This unusual spin polarization pattern does not result from radical pair intersystem crossing because electron transfer does not occur at 85 K. The observed spin polarization of 3*PDI cannot be readily explained by mechanisms discussed previously, leading us to propose a new spin polarization mechanism, which requires that the radical and attached triplet are in the weak exchange regime.
UR - http://www.scopus.com/inward/record.url?scp=77249105980&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77249105980&partnerID=8YFLogxK
U2 - 10.1021/jp909212c
DO - 10.1021/jp909212c
M3 - Article
C2 - 20055506
AN - SCOPUS:77249105980
SN - 1089-5639
VL - 114
SP - 1741
EP - 1748
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 4
ER -