TY - JOUR
T1 - Complexity of nilsystems and systems lacking nilfactors
AU - Host, Bernard
AU - Kra, Bryna
AU - Maass, Alejandro
N1 - Funding Information:
1Partially supported by NSF grant 1200971 2Partially supported by Fondap 15090007 and CMM-Basal grants.
Publisher Copyright:
© 2014, Hebrew University Magnes Press.
PY - 2014/10
Y1 - 2014/10
N2 - Nilsystems are a natural generalization of rotations and arise in various contexts, including in the study of multiple ergodic averages in ergodic theory, in the structural analysis of topological dynamical systems, and in asymptotics for patterns in certain subsets of the integers. We show, however, that many natural classes in both measure preserving systems and topological dynamical systems contain no higher order nilsystems as factors, meaning that the only nilsystems they contain as factors are rotations. Our main result is that in the topological setting, nilsystems have a particular type of complexity of polynomial growth, where the polynomial (with explicit degree) is an asymptotic both from below and above. We also deduce several ergodic and topological applications of these results.
AB - Nilsystems are a natural generalization of rotations and arise in various contexts, including in the study of multiple ergodic averages in ergodic theory, in the structural analysis of topological dynamical systems, and in asymptotics for patterns in certain subsets of the integers. We show, however, that many natural classes in both measure preserving systems and topological dynamical systems contain no higher order nilsystems as factors, meaning that the only nilsystems they contain as factors are rotations. Our main result is that in the topological setting, nilsystems have a particular type of complexity of polynomial growth, where the polynomial (with explicit degree) is an asymptotic both from below and above. We also deduce several ergodic and topological applications of these results.
UR - http://www.scopus.com/inward/record.url?scp=84919907160&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919907160&partnerID=8YFLogxK
U2 - 10.1007/s11854-014-0032-7
DO - 10.1007/s11854-014-0032-7
M3 - Article
AN - SCOPUS:84919907160
SN - 0021-7670
VL - 124
SP - 261
EP - 295
JO - Journal d'Analyse Mathematique
JF - Journal d'Analyse Mathematique
IS - 1
ER -