TY - JOUR
T1 - Composition-dependent structural and transport properties of amorphous transparent conducting oxides
AU - Khanal, Rabi
AU - Buchholz, D. Bruce
AU - Chang, Robert P.H.
AU - Medvedeva, Julia E.
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/5/11
Y1 - 2015/5/11
N2 - Structural properties of amorphous In-based oxides, In-X-O with X=Zn, Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In-X-O. At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 polyhedra. Based on the obtained interconnectivity and spatial distribution of the InO6 and XOx polyhedra in amorphous In-X-O, composition-dependent structural models of the amorphous oxides are derived. The results help explain our Hall mobility measurements in In-X-O thin films grown by pulsed-laser deposition and highlight the importance of long-range structural correlations in the formation of amorphous oxides and their transport properties.
AB - Structural properties of amorphous In-based oxides, In-X-O with X=Zn, Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In-X-O. At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 polyhedra. Based on the obtained interconnectivity and spatial distribution of the InO6 and XOx polyhedra in amorphous In-X-O, composition-dependent structural models of the amorphous oxides are derived. The results help explain our Hall mobility measurements in In-X-O thin films grown by pulsed-laser deposition and highlight the importance of long-range structural correlations in the formation of amorphous oxides and their transport properties.
UR - http://www.scopus.com/inward/record.url?scp=84929598366&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929598366&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.91.205203
DO - 10.1103/PhysRevB.91.205203
M3 - Article
AN - SCOPUS:84929598366
VL - 91
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 1098-0121
IS - 20
M1 - 205203
ER -