Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell

Hanning Chen, Martin G. Blaber, Stacey D. Standridge, Erica J. Demarco, Joseph T. Hupp, Mark A. Ratner, George C. Schatz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

59 Scopus citations


Plasmon-enhanced light absorption in a multicomponent Ag/Ag 2O/TiO 2/N3 dye-sensitized solar cell (DSSC) core-shell nanostructure is studied using a hybrid quantum mechanics/classical electrodynamics (QM/ED) methodology in which the Ag/Ag 2O/TiO 2 nanostructure is treated by the finite-difference time-domain method and the N3 dye is treated by real-time time-dependent density functional theory. As part of this modeling, the undetermined thickness of the nonplasmonic Ag 2O layer on the Ag/Ag 2O/TiO 2 particle was estimated by comparing the computed plasmon wavelength with experimental results. Also, absorption cross sections for the N3 dye were calculated for different locations of the dye on the TiO 2 surface. The spatially averaged absorption cross sections for different thicknesses of TiO 2 were evaluated and used to estimate the relative incident photon conversion efficiency. Encouragingly, it is found that the QM/ED calculations can well reproduce the factor of ∼10 experimental extinction difference spectrum and the photocurrent enhancement factor associated with DSSCs. Our studies demonstrate that the hybrid QM/ED methodology provides a useful guide to the systematic design of plasmon-enhanced DSSCs for achieving optimum photovoltaic efficiency.

Original languageEnglish (US)
Pages (from-to)10215-10221
Number of pages7
JournalJournal of Physical Chemistry C
Issue number18
StatePublished - May 10 2012

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell'. Together they form a unique fingerprint.

Cite this