TY - JOUR
T1 - Computerized activation sequence mapping of the human atrial septum
AU - Chang, Byung Chul
AU - Schuessler, Richard B.
AU - Stone, Constance M.
AU - Branham, Barry H.
AU - Canavan, Thomas E.
AU - Boineau, John P.
AU - Cain, Michael E.
AU - Corr, Peter B.
AU - Cox, James Lewis
N1 - Funding Information:
Supported by National Institutes of Health Grants RO1 HL32257 and RO1 HL33722. We are grateful to Elizabeth Lippert and Karen Sherwood for their technical assistance in making the electrode templates and to Dawn Schuessler for the preparation of the manuscript.
PY - 1990/2
Y1 - 1990/2
N2 - To delineate the propagation of electrical activation in the atrial septum, atrial epicardial and atrial septal maps were recorded intraoperatively using a 156-channel computerized mapping system in 12 patients during sinus rhythm (n = 10), supraventricular tachycardia associated with septal pathways in Wolff-Parkinson-White syndrome (n = 3), atrioventricular (AV) node reentrant tachycardia (n = 4), and atrial flutter (n = 5). The epicardial and septal data were recorded simultaneously from 156 atrial electrodes, digitized, analyzed, and displayed as isochronous maps on a two-dimensional diagram of the atria. During sinus rhythm, the activation wave fronts propagated most rapidly along the large muscle bundles of the atrial septum. During supraventricular tachycardia associated with Wolff-Parkinson-White syndrome, the earliest site of retrograde atrial activation usually corresponded to the position of atrial insertion of the septal pathways. However, the earliest site of activation during orthodromic supraventricular tachycardia was different from that during ventricular pacing in 1 patient with a posterior septal accessory pathway localized by the epicardial mapping study. The data document the rationale for dividing the ventricular end of the accessory pathways (ie, the endocardial technique) rather than the atrial end (ie, the epicardial technique) in patients with Wolff-Parkinson-White syndrome. During AV node reentrant tachycardia, aural activation data suggested that atrial tissue lying outside the confines of the anatomical AV node is a necessary link in this common arrhythmia. Thus, these atrial septal maps explain why surgical dissection, or properly positioned small cryolesions placed in the region of the AV node, can ablate AV node reentrant tachycardia without altering normal AV node function. The maps recorded during atrial flutter suggest the importance of the atrial septum as one limb of a macroreentrant circuit responsible for the arrhythmia, and imply that atrial flutter is arnenable to control by surgical techniques. These studies demonstrate the details of normal atrial septal activation, the importance of the atrial septum in a variety of different atrial arrhythmias, and the basis of and potential for surgical ablation of the most common types of supraventricular arrhythmias.
AB - To delineate the propagation of electrical activation in the atrial septum, atrial epicardial and atrial septal maps were recorded intraoperatively using a 156-channel computerized mapping system in 12 patients during sinus rhythm (n = 10), supraventricular tachycardia associated with septal pathways in Wolff-Parkinson-White syndrome (n = 3), atrioventricular (AV) node reentrant tachycardia (n = 4), and atrial flutter (n = 5). The epicardial and septal data were recorded simultaneously from 156 atrial electrodes, digitized, analyzed, and displayed as isochronous maps on a two-dimensional diagram of the atria. During sinus rhythm, the activation wave fronts propagated most rapidly along the large muscle bundles of the atrial septum. During supraventricular tachycardia associated with Wolff-Parkinson-White syndrome, the earliest site of retrograde atrial activation usually corresponded to the position of atrial insertion of the septal pathways. However, the earliest site of activation during orthodromic supraventricular tachycardia was different from that during ventricular pacing in 1 patient with a posterior septal accessory pathway localized by the epicardial mapping study. The data document the rationale for dividing the ventricular end of the accessory pathways (ie, the endocardial technique) rather than the atrial end (ie, the epicardial technique) in patients with Wolff-Parkinson-White syndrome. During AV node reentrant tachycardia, aural activation data suggested that atrial tissue lying outside the confines of the anatomical AV node is a necessary link in this common arrhythmia. Thus, these atrial septal maps explain why surgical dissection, or properly positioned small cryolesions placed in the region of the AV node, can ablate AV node reentrant tachycardia without altering normal AV node function. The maps recorded during atrial flutter suggest the importance of the atrial septum as one limb of a macroreentrant circuit responsible for the arrhythmia, and imply that atrial flutter is arnenable to control by surgical techniques. These studies demonstrate the details of normal atrial septal activation, the importance of the atrial septum in a variety of different atrial arrhythmias, and the basis of and potential for surgical ablation of the most common types of supraventricular arrhythmias.
UR - http://www.scopus.com/inward/record.url?scp=0025215362&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025215362&partnerID=8YFLogxK
U2 - 10.1016/0003-4975(90)90144-U
DO - 10.1016/0003-4975(90)90144-U
M3 - Article
C2 - 2306145
AN - SCOPUS:0025215362
SN - 0003-4975
VL - 49
SP - 231
EP - 241
JO - Annals of Thoracic Surgery
JF - Annals of Thoracic Surgery
IS - 2
ER -