Concept Drift and Covariate Shift Detection Ensemble with Lagged Labels

Yiming Xu, Diego Klabjan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In model serving, having one fixed model during the entire often life-long inference process is usually detrimental to model performance, as data distribution evolves over time, resulting in lack of reliability of the model trained on historical data. It is important to detect changes and retrain the model in time. The existing methods generally have three weaknesses: 1) using only classification error rate as signal, 2) assuming ground truth labels are immediately available after features from samples are received and 3) unable to decide what data to use to retrain the model when change occurs. We address the first problem by utilizing six different signals to capture a wide range of characteristics of data, and we address the second problem by allowing lag of labels, where labels of corresponding features are received after a lag in time. For the third problem, our proposed method automatically decides what data to use to retrain based on the signals. Extensive experiments on structured and unstructured data for different type of data changes establish that our method consistently outperforms the state-of-the-art methods by a large margin.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
EditorsYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1504-1513
Number of pages10
ISBN (Electronic)9781665439022
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States
Duration: Dec 15 2021Dec 18 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Conference

Conference2021 IEEE International Conference on Big Data, Big Data 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/15/2112/18/21

Keywords

  • Drift Detection
  • Lagged Labels
  • Model Serving

ASJC Scopus subject areas

  • Information Systems and Management
  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Information Systems

Fingerprint

Dive into the research topics of 'Concept Drift and Covariate Shift Detection Ensemble with Lagged Labels'. Together they form a unique fingerprint.

Cite this