Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model

Stefan Grossauer, Katharina Koeck, Nicole E. Murphy, Ian D. Meyers, Mathieu Daynac, Nathalene Truffaux, Albert Y. Truong, Theodore P. Nicolaides, Martin McMahon, Mitchel S. Berger, Joanna J. Phillips, C. David James, Claudia K. Petritsch*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma.

Original languageEnglish (US)
Pages (from-to)75839-75853
Number of pages15
JournalOncotarget
Volume7
Issue number46
DOIs
StatePublished - 2016

Funding

The authors would like to thank David Deng, Sista Sugiarto, Hannah Y. Collins and Patrizia Hanecker for technical assistance, Helena Oft for editing, Sandra Gomez-Lopez for the schematic in Figure 1, and Martin Oft and Derek Wainwright for critical discussion. National Institute of Health/National Cancer Institute (CA16476-04 to C.K.P); National Institute of Neurological Disorders and Stroke (NS080619 to C.K.P and C.D.J); Childhood Brain Tumor Foundation (to C.K.P.); the Loglio Research Program (to C.K.P), the Research Allocation Program Investigator Grant CTSIUCSF (to C.K.P) and California Institute of Regenerative Medicine (TB1-01190 to I.D.M).

Keywords

  • Dabrafenib
  • MAPK pathway reactivation
  • Primary adaptive therapy resistance
  • Syngeneic high-grade astrocytoma model

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model'. Together they form a unique fingerprint.

Cite this