TY - JOUR
T1 - Conduction remodeling in human end-stage nonischemic left ventricular cardiomyopathy
AU - Glukhov, Alexey V.
AU - Fedorov, Vadim V.
AU - Kalish, Paul W.
AU - Ravikumar, Vinod K.
AU - Lou, Qing
AU - Janks, Deborah
AU - Schuessler, Richard B.
AU - Moazami, Nader
AU - Efimov, Igor R.
PY - 2012/4/17
Y1 - 2012/4/17
N2 - BACKGROUND-: Several arrhythmogenic mechanisms have been inferred from animal heart failure models. However, the translation of these hypotheses is difficult because of the lack of functional human data. We aimed to investigate the electrophysiological substrate for arrhythmia in human end-stage nonischemic cardiomyopathy. METHODS AND RESULTS-: We optically mapped the coronary-perfused left ventricular wedge preparations from human hearts with end-stage nonischemic cardiomyopathy (heart failure, n=10) and nonfailing hearts (NF, n=10). Molecular remodeling was studied with immunostaining, Western blotting, and histological analyses. Heart failure produced heterogeneous prolongation of action potential duration resulting in the decrease of transmural action potential duration dispersion (64±12 ms versus 129±15 ms in NF, P<0.005). In the failing hearts, transmural activation was significantly slowed from the endocardium (39±3 cm/s versus 49±2 cm/s in NF, P=0.008) to the epicardium (28±3 cm/s versus 40±2 cm/s in NF, P=0.008). Conduction slowing was likely due to connexin 43 (Cx43) downregulation, decreased colocalization of Cx43 with N-cadherin (40±2% versus 52±5% in NF, P=0.02), and an altered distribution of phosphorylated Cx43 isoforms by the upregulation of the dephosphorylated Cx43 in both the subendocardium and subepicardium layers. Failing hearts further demonstrated spatially discordant conduction velocity alternans which resulted in nonuniform propagation discontinuities and wave breaks conditioned by strands of increased interstitial fibrosis (fibrous tissue content in heart failure 16.4±7.7 versus 9.9±1.4% in NF, P=0.02). CONCLUSIONS-: Conduction disorder resulting from the anisotropic downregulation of Cx43 expression, the reduction of Cx43 phosphorylation, and increased fibrosis is likely to be a critical component of arrhythmogenic substrate in patients with nonischemic cardiomyopathy.
AB - BACKGROUND-: Several arrhythmogenic mechanisms have been inferred from animal heart failure models. However, the translation of these hypotheses is difficult because of the lack of functional human data. We aimed to investigate the electrophysiological substrate for arrhythmia in human end-stage nonischemic cardiomyopathy. METHODS AND RESULTS-: We optically mapped the coronary-perfused left ventricular wedge preparations from human hearts with end-stage nonischemic cardiomyopathy (heart failure, n=10) and nonfailing hearts (NF, n=10). Molecular remodeling was studied with immunostaining, Western blotting, and histological analyses. Heart failure produced heterogeneous prolongation of action potential duration resulting in the decrease of transmural action potential duration dispersion (64±12 ms versus 129±15 ms in NF, P<0.005). In the failing hearts, transmural activation was significantly slowed from the endocardium (39±3 cm/s versus 49±2 cm/s in NF, P=0.008) to the epicardium (28±3 cm/s versus 40±2 cm/s in NF, P=0.008). Conduction slowing was likely due to connexin 43 (Cx43) downregulation, decreased colocalization of Cx43 with N-cadherin (40±2% versus 52±5% in NF, P=0.02), and an altered distribution of phosphorylated Cx43 isoforms by the upregulation of the dephosphorylated Cx43 in both the subendocardium and subepicardium layers. Failing hearts further demonstrated spatially discordant conduction velocity alternans which resulted in nonuniform propagation discontinuities and wave breaks conditioned by strands of increased interstitial fibrosis (fibrous tissue content in heart failure 16.4±7.7 versus 9.9±1.4% in NF, P=0.02). CONCLUSIONS-: Conduction disorder resulting from the anisotropic downregulation of Cx43 expression, the reduction of Cx43 phosphorylation, and increased fibrosis is likely to be a critical component of arrhythmogenic substrate in patients with nonischemic cardiomyopathy.
KW - cardiomyopathy
KW - conduction velocity
KW - congestive heart failure
KW - optical mapping
KW - repolarization
UR - http://www.scopus.com/inward/record.url?scp=84859752570&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859752570&partnerID=8YFLogxK
U2 - 10.1161/CIRCULATIONAHA.111.047274
DO - 10.1161/CIRCULATIONAHA.111.047274
M3 - Article
C2 - 22412072
AN - SCOPUS:84859752570
SN - 0009-7322
VL - 125
SP - 1835
EP - 1847
JO - Circulation
JF - Circulation
IS - 15
ER -