Conformational and linear B-cell epitopes of Asp f 2, a major allergen of Aspergillus fumigatus, bind differently to immunoglobulin E antibody in the sera of allergic bronchopulmonary aspergillosis patients

Banani Banerjee*, Paul A. Greenberger, Jordan N. Fink, Viswanath P. Kurup

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Asp f 2 is a major Aspergillus fumigatus allergen involved in allergic bronchopulmonary aspergillosis. Knowledge of the B-cell epitopes may contribute to the understanding of immunoregulation and immunodiagnosis. To elucidate the immunoglobulin E (IgE) binding epitopes in the linear sequence of Asp f 2, we synthesized decamer peptides spanning the whole molecule of Asp f 2 on derivatized cellulose membranes and evaluated IgE binding in ABPA patient and control sera. Peptides three to five amino acids long were synthesized based on amino acid sequences within the IgE binding regions and evaluated for the specificity of epitope antibody interactions. Nine IgE binding regions were recognized in this protein of 268 amino acid residues. Of the nine epitopes, seven (ATQRRQI, RKYFG, HWR, YTTRR, DHFAD, ALEAYA, and THEGGQ) are present in the hydrophilic regions of Asp f 2. Immunologic evaluation of the three recombinant fragments, Asp f 2A encompassing the N- terminal epitope region, Asp f 2B without N- and C-terminal regions of the protein, and Asp f 2C representing C-terminal epitopes, revealed that either the N- or C-terminal region of the protein is essential for the correct folding and conformation for IgE antibody binding.

Original languageEnglish (US)
Pages (from-to)2284-2291
Number of pages8
JournalInfection and immunity
Volume67
Issue number5
DOIs
StatePublished - May 1999

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Conformational and linear B-cell epitopes of Asp f 2, a major allergen of Aspergillus fumigatus, bind differently to immunoglobulin E antibody in the sera of allergic bronchopulmonary aspergillosis patients'. Together they form a unique fingerprint.

Cite this