Abstract
In studies to simplify the fabrication of bulk-heterojunction organic photovoltaic (OPV) devices, it was found that when glass/tin-doped indium oxide (ITO) substrates are treated with dilute aqueous HCl solutions, followed by UV ozone (UVO), and then used to fabricate devices of the structure glass/ITO/P3HT:PCBM/LiF/Al, device performance is greatly enhanced. Light-to-power conversion efficiency (Eff) increases from 2.4% for control devices in which the ITO surface is treated only with UVO to 3.8% with the HCl + UVO treatment-effectively matching the performance of an identical device having a PEDOT:PSS anode interfacial layer. The enhancement originates from increases in VOC from 463 to 554 mV and FF from 49% to 66%. The modified-ITO device also exhibits a 4× enhancement in thermal stability versus an identical device containing a PEDOT:PSS anode interfacial layer. To understand the origins of these effects, the ITO surface is analyzed as a function of treatment by ultraviolet photoelectron spectroscopy work function measurements, X-ray photoelectron spectroscopic composition analysis, and atomic force microscopic topography and conductivity imaging. Additionally, a diode-based device model is employed to further understand the effects of ITO surface treatment on device performance.
Original language | English (US) |
---|---|
Pages (from-to) | 2584-2591 |
Number of pages | 8 |
Journal | Langmuir |
Volume | 26 |
Issue number | 4 |
DOIs | |
State | Published - Feb 16 2010 |
ASJC Scopus subject areas
- Condensed Matter Physics
- Spectroscopy
- General Materials Science
- Surfaces and Interfaces
- Electrochemistry