Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels

H. Cai*, J. Wang, Y. Feng, M. Wang, Z. Qin, J. B. Dunn

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Land use change (LUC)-induced surface albedo effects for expansive biofuel production need to be quantified for improved understanding of biofuel climate impacts. We addressed this emerging issue for expansive biofuel production in the United States (U.S.) and compared the albedo effects with greenhouse gas emissions highlighted by traditional life-cycle analysis of biofuels. We used improved spatial representation of albedo effects in our analysis by obtaining over 1.4 million albedo observations from the Moderate Resolution Imaging Spectroradiometer flown on NASA satellites over a thousand counties representative of six Agro-Ecological Zones (AEZs) in the U.S. We utilized high-spatial-resolution, crop-specific cropland cover data from the U.S. Department of Agriculture and paired the data with the albedo data to enable consideration of various LUC scenarios. We simulated the radiative effects of LUC-induced albedo changes for seven types of crop covers using the Monte Carlo Aerosol, Cloud and Radiation model, which employs an advanced radiative transfer mechanism coupled with spatially and temporally resolved meteorological and aerosol conditions. These simulations estimated the net radiative fluxes at the top of the atmosphere as a result of the LUC-induced albedo changes, which enabled quantification of the albedo effects on the basis of radiative forcing defined by the Intergovernmental Panel on Climate Change for CO2 and other greenhouse gases effects. Finally, we quantified the LUC-induced albedo effects for production of ethanol from corn, miscanthus, and switchgrass in different AEZs of the U.S. Results show that the weighted national average albedo effect is a small cooling effect of -1.8 g CO2 equivalent (CO2e) for a mega-Joule (MJ) of corn ethanol, a relatively stronger warming effect of 12.1 g CO2e per MJ of switchgrass ethanol, and a small warming effect of 2.7 g CO2e per MJ of miscanthus ethanol. Significant variations in albedo-induced effects are found among different land conversions for the same biofuel, and among different AEZ regions for the same land conversion and biofuel. This spatial heterogeneity, owing to non-linear albedo dynamics and radiation processes, suggests highly variable LUC-induced albedo effects depending on geographical locations and vegetation. These findings provide new insights on potential climate effects by producing biofuels through considering biogeophysical as well as biogeochemical effects of biofuel production and use in the U.S.

Original languageEnglish (US)
Pages (from-to)2855-2867
Number of pages13
JournalEnergy and Environmental Science
Volume9
Issue number9
DOIs
StatePublished - Sep 2016

ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint Dive into the research topics of 'Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels'. Together they form a unique fingerprint.

Cite this